摘要:在量子理论早期以来,搜索打破晶格晶格对称性的非常规量子阶段一直是物理学的重点,这是由基本兴趣和潜在应用驱动的。突出的例子包括铜土超导体,这些导体以其非常规的D-Wave Cooper配对和无耗散运输而闻名。在本演讲中,我们将讨论我们最近的发现[1],该发现是由我们的早期预测和对非常规旋转型效应的预测和观察结果所激发的[2,3,4]。与共同的铁磁性和抗铁磁性不同,这种非常规的雌雄同体相(请参阅图)打破了晶体晶格的对称性,并在其自旋和电子结构中同时具有d,g或i-甲状化波的特征[1]。d-wave altermagnetism代表了D波超导的磁性类似物。我们通过采用和开发一个对称框架来确定altermagnetism,该框架考虑了涉及电子自旋和晶格的配对转换。该框架正在作为磁晶体研究中的新范式出现。我们将通过讨论(i)半导体MNTE的altermagnetic带结构来证明其有用性,我们最近通过使用光发射光谱[5]和(ii)鉴定了240多种现实的Altermagentic候选者,我们最近通过协作工作对此进行了实验观察。
在本研究中,我们利用偏振相关角分辨光电子能谱 (ARPES) 研究了六方 MnTe (0001) 块体单晶的电子能带结构。样品通过混合化学计量量的细粉 Mn 和 Te 来制备,并在 10 -5 pa 的真空石英安瓿中密封。我们通过固相反应法生长 MnTe 单晶并将其切割成 (0001) 面。为了获得干净的表面,我们对样品进行了溅射和退火。我们使用 2kV 的束流能量进行溅射,退火温度为 330 摄氏度。通过反复的溅射和退火循环,我们最终得到了干净的表面。通过俄歇电子能谱检查表面的杂质,并通过尖锐的六方低能电子衍射 (LEED) 斑点确认了长程有序。偏振相关 ARPES 实验是在配备 ASTRAIOS 电子分析仪的 HiSOR BL-9A 上进行的。我们将光子能量设置为 40 eV,温度设置为 200K。入射光的偏振方向由波荡器磁铁配置控制。