摘要:高空长航时 (HALE) 飞机由极轻的结构、大翼展和大纵横比组成。这些特性的组合导致飞机系统具有独特的动态行为,其特点是结构和刚体特征模态的强烈相互作用。这些特性对此类飞机的飞行控制算法的稳健性和容错性提出了特定要求。控制系统必须能够让飞机安全地沿着定义的轨道飞行,即使在发生故障的情况下也是如此。由于这些飞机的尺寸较大,它们通常会过度驱动,具有多个冗余控制面。本文利用这种冗余来设计容错控制系统,以确保在故障情况下实现最佳控制性能。该策略基于故障检测和隔离 (FDI) 算法来检测故障的控制面。此故障信息用于在多模型控制方法中切换到备用控制律。FDI 滤波器是使用基于零空间的设计范例设计的,而备用控制器是应用结构化 H ∞ 控制设计技术合成的。
新墨西哥州立大学 - 先进高空气体 (AHAB) Peter Lobner,2022 年 3 月 10 日更新 21 世纪初,新墨西哥州立大学物理科学实验室正在开发先进高空气体 (AHAB),这是一种太阳能驱动、非刚性、氦超压、空气动力学飞艇,旨在展示可变浮力推进。这种推进方式首次在 1863 年得到展示,当时所罗门·安德鲁斯博士首次驾驶充满氢气的 Aereon 飞艇飞越新泽西州珀斯安博伊。20 世纪 60 年代初,Aereon 公司(与安德鲁斯博士无关)建造了 Aereon III 混合飞艇,该飞艇设计为仅使用可变浮力推进即可飞行。Aereon III 在 1966 年的滑行测试中严重受损,从未有机会展示其可变浮力推进能力。改变飞艇的浮力可以使其爬升或下降。与所罗门·安德鲁斯的 Aereon 一样,AHAB 的设计目的是在重复的跳跃飞行剖面中每次爬升或下降时产生向前的推进力。凭借这种适度的推进能力,AHAB 被设计用于近太空(非常高的高度)的驻留操作,而螺旋桨在这种环境中是无效的。AHAB 飞艇的整体浮力通过内部气囊进行调整。当准备好飞行时,飞艇具有正浮力,并且空气体中的氦超压会压缩气囊。当飞艇滑翔上升时,可以打开排气阀释放气囊中剩余的空气,使未压载的飞行器达到其最大高度(压力高度)。为了过渡到滑翔下降,鼓风机将环境空气泵入气囊,增加飞艇的重量,直到其产生负浮力。通过将气囊排入大气,即可终止下降。
每种用例在不同国家/地区都有相当独特的挑战和特点,因此通用的 HAPS 平台解决方案似乎不可能满足所有不同场景的需求。强烈建议仔细分析目标用例,考虑地理、社会和经济方面。由于分析是由 MNO 进行的,没有关于潜在 HAPS 解决方案的详细输入,因此结果仅提供了初步的粗略指示。但是,还与不同的 HAPS 供应商进行了初步讨论。在这些讨论中,HAPS 供应商指出了不同的成本案例,导致一些用例被更积极地看待,而其他用例在部署 HAPS 的商业案例方面被更消极地看待。未来需要与 HAPS 供应商进行进一步深入合作,以得出更切实的结论。人们还承认,HAPS 供应商未来将有成本改进的空间,例如由于技术的成熟和扩展。
高空平台 (HAP) 是一种重量极轻、高空长航时飞机 (HALE),设计用于在 FL450 和 FL800 之间的高度上保持空中飞行并保持位置数天。携带光学测量设备,科学家可以长时间连续观测地球。与卫星相比,这是一个优势,卫星通常每隔几天才经过同一地点,而且飞行高度要高得多,例如,导致光学分辨率较低。启动和降落的能力允许重新配置和重新定位飞机以执行新的和不同的任务。此外,与卫星相比,飞机的购买和运营成本预计要低得多,包括基础设施(机场与航天港)。图 1 显示了 DLR 目前正在开发的 HAP 配置。我们的想法是制造一种飞行器,它飞行速度非常慢(V EAS = 9 .0 ...11 .0 米/秒),但在推进和空气动力学性能方面非常高效,并且由太阳能供电。这就要求设计能够提供较大的区域来安装太阳能电池板,同时重量要非常轻。在夜间,高度会降低并使用电池,然后在白天飞机重新获得高度时对电池进行充电。目前正在业界开发的类似配置包括空客 Zephyr [ 1 , 2 ](原由 QinetiQ 开发)或 BAE Systems 的 Phasa-35 [ 3 ]。其他有或没有尾翼的类似飞机包括 Solar Impulse [ 4 ] 或 NASA Helios 原型机 [ 5 ]。前两个示例计划用于商业用途,而后者具有更多的科学背景。本文是系列出版物中的第二篇。在第一篇出版物 [ 6 ] 中,作者重点关注:
摘要。地球非常重要的热带山区雨林中的动态速率是这些森林对全球变化的反应的核心部分,但是它们与环境渐变的关系知之甚少。我们在成熟的森林工作,在哥斯达黎加的Talamanca Cordillera上的440 - 2810 M ASL高度梯度上工作,在2012年至2019年期间,五个0.25-HA永久性样品地块的五个次要次数为29 HA。我们确定了乳房高度直径≥10cm的个体的死亡率和招聘率以及基础面积(G)增量。我们的主要假设是,支架动态速率随高度(因此温度)而降低;我们还测试了假设,即随着情节社区加权平均特异性叶面积(CWM SLA)而增加的速率,并随着CWM木材特异性重力(WSG)而降低。我们使用通用添加剂模型开发了回归来检验我们的假设。死亡率和招聘率随海拔高度降低,尽管强烈的非线性死亡率趋势可能是由极端的天气和温度驱动的。此外,招聘率的最佳模型还包括与具有负相关关系的CWM SLA。总的基础面积增量δg毛,这是在研究期间幸存的树木的年度基础面积增量,与海拔高度有驼峰形的关系,可能与高海拔森林的低CWM WSG有关。δG总体确实与CWM WSG负相关。δg净为负。CWM特征应测量以提高理解。然而,在具有负相关关系的CWM WSG的模型中,由于山地森林的死亡率较低,净基础面积生长(δg净,初始图和最终地块基础面积之间的年化差异)与高度呈正相关。雨林支架在这个长高度梯度上的动态模式超出了对温度的直接反应,需要进一步的工作以改善森林对气候变化的反应。风暴和闪电对低海拔森林的影响以及山地fagaceae主导森林的潜在高弹性需要注意。在比较热带森林海拔样品时,应期望脱离>偏差,而不是普遍性。
这些系统已经很完善,是卫星电视广播和固定连接服务的基础。GEO 卫星可以与低成本接收器(如抛物面天线)配合使用,这些接收器指向天空中的固定位置,无需依赖任何昂贵的跟踪设备。但是,缺点是,当通信距离超过 35,000 公里时,飞行时间会变得很长,并且卫星的光束会分散在很大的表面区域上。这意味着 GEO 卫星不适合双向延迟敏感服务,并且它们无法提供与地面系统一样多的单位面积容量。
本文介绍了从高空平台(HAP)部署量子密钥分布(QKD)的可行性研究,以确保未来的通信应用程序和服务。本文对最先进的HAP技术的状态进行了详尽的审查,并总结了HAP可以带给QKD服务的好处。本文中提出了详细的链路预算分析,以评估从高空20公里飞行的平流层HAP传递QKD的可行性。结果显示在大多数操作条件下的宽敞链路预算带来了使用发散梁的可能性,从而简化了在HAP和地面上光学系统的指向,获取和跟踪(PAT),从而有可能扩大QKD可能是可行解决方案的未来使用情况的范围。
人类基因组中蕴藏着许多最小但最重要的秘密。最近的进展加速了我们解开这些谜团的能力,并发现了基因组如何导致人类特征的共同和独特变化,包括那些对生存至关重要的特征。人类物种中一些最引人注目的适应性例子发生在过去几千年迁徙到西藏、安第斯山脉和埃塞俄比亚高原的人群中。几个世纪前,生理学家首次注意到高地人群的不同特征,推测特定特征对高海拔地区氧气供应减少导致的环境缺氧带来的挑战有益或有害 ( West, 1998 )。鉴于许多高地人群已经在这样的环境中生存了数百代,人们推测遗传因素为这些群体提供了适应性优势。在过去十年中,通过全基因组扫描寻找突出基因组内异常模式的适应性特征,深入了解人类物种的进化历史变得越来越可行 ( Simonson, 2015 )。虽然许多对高原藏族、安第斯山脉和埃塞俄比亚人群的原始研究都是基于对分散在整个基因组中的单核苷酸变化进行“标记”的分析,但全基因组测序 (WGS) 工具提供了培养多个大规模基因组数据集的机会,这些数据集为跨人群比较提供了更高的分辨率。进一步的技术和分子