太阳能无疑是清洁、可再生和环保的能源,但它在地球上的分布并不均匀。饮用水也是如此。在我们的地球上,有些地区缺乏饮用水,这就是为什么太阳能蒸馏是解决这一问题最有利的方法之一。在偏远地区,有时很难找到饮用水。当地居民被迫寻找一种将污水转化为饮用水的解决方案。污水的太阳能蒸馏和太阳能蒸馏器的建造一直是许多科学实验室的研究对象 (Sadasivuni et al ., 2020; Panchal et al ., 2020; Khechekhouche et al ., 2020a; Khechekhouche et al ., 2019a)。在偏远地区使用的太阳能蒸馏器的产量相当低,这就是为什么许多研究试图通过结合其他能源系统来提高这种性能,例如平板太阳能集热器、抛物面聚光器(Wang 等人,2022 年)、圆柱形抛物面聚光器(Essa 等人,2022 年)、光伏(Hansen 等人,2021 年)和许多其他系统。其他研究使用了不太复杂和更简单的方法,并通过改变太阳能蒸馏器的厚度、角度或玻璃盖数量(Cherraye 等人,2020 年;Panchal,2016 年;Khechekhouche 等人,2021 年,Khechekhouche 等人,2019b 年;Khechekhouche 等人,2017 年)。太阳能蒸馏器实验使用了外部和内部折射器,以提高设备的性能 (Khechekhouche et al ., 2020b)。其他人则尝试冷却蒸馏器的玻璃盖以加速蒸发 (Khan et al ., 2021)。
铝 (Al) 是地壳中最丰富的金属,是继氧 (O 2 ) 和硅 (Si) 之后第三大丰富元素。它呈银白色,具有高电导率和热导率,熔点为 660 0 C。铝已广泛应用于各种领域。在基底上蒸镀的铝膜是非球面镜最常用的表面涂层,因为铝在可见光区是良好的光反射器,在中红外和远红外 (IR) 区是出色的反射器 [1]。此外,铝在微电子技术中广泛用作欧姆接触、肖特基势垒接触、栅极电极以及互连线 [2]。铝还用于制造薄膜晶体管 (TFT)、光电探测器、太阳能电池和许多其他设备 [3]。在太阳能电池的制造中,铝被广泛用作背接触,因为它易于沉积、表面电阻低,并且能够引入背面场效应 (BSF),从而最大限度地降低器件背面的载流子复合率 [4,5]。在薄膜太阳能电池中,铝接触的高反射特性被利用作为光捕获解决方案,其中低能光子将被倾斜反射回吸收层。这增加了光(光子)在器件中的光路长度,从而增加了吸收率
在当今世界,所有工程和制造业主要集中在优质金属和制造材料上。最近的一些研究工作还侧重于设计、制造、模拟、建模、质量检查和性能评估与各种金属混合的复合材料。几种材料以规定的比例与多种金属混合以产生复合材料。我们的日常生活中使用了大量的复合产品。人类生活的必需品之一是房屋和建筑物。现代建筑设计师在建筑施工中使用铝复合材料,如铝复合板 (ACP)。本文介绍了具有各种特征的 ACP 的一般信息。由于 ACP 是一种用于多种实时应用用途的新技术,本文提供了 ACP 的制造概述。它介绍了铝复合材料板、铝板和铝复合板的制造。从规格和市场报告来看,ACP 非常适合建筑施工、汽车制造和其他必要的生产。
以下比较分析将是船舶结构委员会报告参考文献 A 的比较设计研究的延伸。该报告存在错误,参考文献 B 对其进行了更正。原始研究仅涉及铝制底部和侧面结构。给出了船体中部船体梁剖面模量、LCG 和船体上其他几个点的板厚、加强筋和横框架剖面模量的要求。在本比较研究中,这些要求将扩展为在钢结构中提供相同的要求,并将选择结构构件来比较底部和侧板的重量。由于原始研究中未提供足够的信息,因此不会确定甲板尺寸,也不会确定船体梁剖面模量,以确定局部要求或船体梁要求是否决定实际剖面模量。
以下比较分析将是船舶结构委员会报告参考文献 A 的比较设计研究的延伸。该报告存在错误,参考文献 B 对其进行了更正。原始研究仅涉及铝制底部和侧面结构。给出了船体中部船体梁剖面模量、LCG 和船体上其他几个点的板厚、加强筋和横框架剖面模量的要求。在本比较研究中,这些要求将扩展为在钢结构中提供相同的要求,并将选择结构构件来比较底部和侧板的重量。由于原始研究中未提供足够的信息,因此不会确定甲板尺寸,也不会确定船体梁剖面模量,以确定局部要求或船体梁要求是否决定实际剖面模量。
在航空航天工业中,疲劳裂纹扩展对飞机结构机械装配设计构成了严重威胁。在这些结构中,裂纹扩展是一个需要认真处理的问题,因为除了经济损失之外,还会影响人员生命安全。疲劳裂纹扩展 (FCG) 速率是在恒定振幅载荷作用下,裂纹随循环数增长的速率。分析曲线后发现,应力强度因子 (SIF) 范围“ ∆𝐾 ”与 FCG 速率“ 𝑑𝑎 𝑑𝑁 ⁄ ”之间的相关性呈偏离线性关系,曲线的区域 II 也称为巴黎区域。经验公式方法不能令人满意地处理线性因子。与之前的方法相比,机器学习算法凭借其出色的学习能力和灵活性,能够更好地处理非线性问题。在本研究工作中,利用基于遗传算法、爬山算法和模拟退火算法的优化神经网络来预测 FCG 率。通过对 2324-T39、7055-T7511 和 6013-T651 等不同航空铝合金进行测试,验证了所提出的技术。通过基于模拟退火的优化神经网络,对铝合金 6013-T651 的最小预测 MSE 为 1.0559 × 10 −9。此外,结果与实验过程中设想的数据非常吻合。
10.如权利要求1-9所述的铝-水氢能存储系统,适用于:a.车辆电池系统,适用于各种类型的车辆,包括但不限于汽车、卡车和电动公交车;和/或b.独立的大容量能量存储单元,能够集成到货物集装箱或其他可运输配置中,便于高效运输和部署。
工程高压水溶液电池(AAIBS)Erhai Hu,Bei-er Jia,Qiang Zhu,Qiang Zhu,Jianwei Xu,Xian Jun Loh,Jian Jun Chen,Jian Chen*,Hongge Pan,Qingyu Yan* E. Hu* E. Hu,Q. Alexyan@ntu.edu.sg B.-E. Nanyang Technological University,639798,新加坡Q. Q. 627833,新加坡
2 Xi'an Jiotong University的仪器分析中心,Xi'an Jiotong University,Xi'an 710049,中国 *通信:li@xjtu.edu.edu.cn(l.l.) 收到:2023年4月4日;接受:2023年6月17日;在线发布:2023年8月30日; https://doi.org/10.59717/j.xinn-mater.2023.100030©2023作者。 这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。 引用:Shi X.,Zhang H.,Zhang Y.等,(2023)。 锂离子电池中铝电流收集器的腐蚀和保护。 创新材料1(2),100030。 铝(Al)电流收集器,这是锂离子电池(LIBS)的重要组成部分,在影响Libs的电化学性能中起着至关重要的作用。 在LIB的工作和日历老化中,Al都遭受了严重的腐蚀问题,导致电化学性能的衰减。 然而,与LIBS中的阳极和阴极材料,电解质甚至分离器相比,很少有努力对AL的研究进行。 在这里,审查了最近的AL腐蚀和保护方面的研究进展。 我们首先简要概述了Al腐蚀机制及其影响因素。 然后,用于评估Al的电化学,形态和化学特性的高级技术总结,以发现LIBS中的Al腐蚀机制。 接下来,我们会回顾AL,电解质和抑制剂的Al protect策略,具有功能机理,材料选择及其结构设计。 最后,我们在腐蚀和保护方面展现了未来的研究方向。2 Xi'an Jiotong University的仪器分析中心,Xi'an Jiotong University,Xi'an 710049,中国 *通信:li@xjtu.edu.edu.cn(l.l.)收到:2023年4月4日;接受:2023年6月17日;在线发布:2023年8月30日; https://doi.org/10.59717/j.xinn-mater.2023.100030©2023作者。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。引用:Shi X.,Zhang H.,Zhang Y.等,(2023)。锂离子电池中铝电流收集器的腐蚀和保护。创新材料1(2),100030。铝(Al)电流收集器,这是锂离子电池(LIBS)的重要组成部分,在影响Libs的电化学性能中起着至关重要的作用。在LIB的工作和日历老化中,Al都遭受了严重的腐蚀问题,导致电化学性能的衰减。然而,与LIBS中的阳极和阴极材料,电解质甚至分离器相比,很少有努力对AL的研究进行。在这里,审查了最近的AL腐蚀和保护方面的研究进展。我们首先简要概述了Al腐蚀机制及其影响因素。然后,用于评估Al的电化学,形态和化学特性的高级技术总结,以发现LIBS中的Al腐蚀机制。接下来,我们会回顾AL,电解质和抑制剂的Al protect策略,具有功能机理,材料选择及其结构设计。最后,我们在腐蚀和保护方面展现了未来的研究方向。本综述为理解Al抗腐蚀的影响和发展提供了实验和理论支持,这将对包括腐蚀,先进材料和储能设备在内的研究社区有益。
由于环保法规和节能需求[1–5],功率模块基板需要将铝或铜等金属层键合到氮化铝 (AlN)、氮化硅 (Si 3 N 4 ) 或氧化铝 (Al 2 O 3 ) 等陶瓷绝缘体上。根据基于金属层和键合方法的分类,这些基板称为直接键合铝 (DBA) 基板[1, 6, 7]、直接键合铜 (DBC) 基板[8, 9] 和活性金属键合 (AMB) 基板[10–15]。AMB 基板是通过使用钎料金属(例如 Ag-Cu-Ti 基合金)将铜键合到 AlN 上而制成的。这些系统中的 Cu/AlN 界面结构以 Ag-Cu 合金层和