程序论文:Dhillon,G.,Hassan,N.,Wilson,S。等。(另外3位作者)(2024)户外空气污染是阿尔茨海默氏病的危险因素:系统评价。in:阿尔茨海默氏症和痴呆症:阿尔茨海默氏症协会杂志。阿尔茨海默氏症协会国际会议2024年(AAIC 2024),28年7月28日-2024年8月1日,美国费城。 Wiley阿尔茨海默氏症协会国际会议2024年(AAIC 2024),28年7月28日-2024年8月1日,美国费城。Wiley
随着世界人口的年龄,阿尔茨海默氏病(AD)有望达到流行水平。目前尚无治疗方法可以阻止这种使人衰弱的疾病。我们最近的发现,记忆基因弧调节与AD病理生理学相关的许多基因的表达为一种新的治疗方法奠定了阶段,这种方法并非基于迄今为止大多数研究的淀粉样假说在结构上基于结构上。神经元活性依赖性弧表达由包含两种酶的染色质调节复合物控制:TIP60和PHF8。在这里,我们表明针对这些蛋白质的小分子抑制了弧表达。这一发现为对抗阿尔茨海默氏病的新型治疗方法奠定了基础。靶向ARC开设了“多目标”疗法的新领域,旨在同时干预该疾病的多个方面。由于ARC在控制与AD中有关的多个基因和途径的表达中的作用,它可以用作治疗中心。
在过去的四十年中,非侵入性脑刺激技术 (NIBS) 在认知科学和痴呆症护理(包括神经康复)领域引起了极大的兴趣,因为它在提高对大脑功能的洞察力和增强残余认知功能方面具有新兴潜力。本文回顾并讨论了 NIBS 的基本生理和技术机制以及不同的应用,以强调 NIBS 在认知科学和神经退行性疾病(尤其是阿尔茨海默病)的临床和研究环境中的多学科和转化方法中的重要性。事实上,NIBS 策略可能代表着一个有希望的机会来增加神经调节作为个性化患者护理的有效干预措施的潜力。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年1月13日发布。 https://doi.org/10.1101/2025.01.099.631584 doi:Biorxiv Preprint
鼻内施用的脱铁胺(DFO)有望成为神经退行性疾病和神经系统损伤的新型治疗方法。鼻内(IN)递送允许DFO等药物绕过血液 - 脑障碍,并在几分钟之内沿嗅觉和三叉神经沿嗅觉和三叉神经在细胞外传递(Thorne等,2004; Chen等,1998; Frey,1997; Thorne等,1995; Thorne等,1995)。鼻内递送具有最大程度地减少全身性暴露的额外好处,从而减少副作用以及无创的。脱铁胺是一种经认可的通用抗氧化剂和抗炎药,其结合铁具有很高的亲和力,但与系统给药的大脑渗透有限(Di Paola等,2022)。游离铁在阿尔茨海默氏病(AD),帕金森氏病和其他脑部疾病的个体的大脑中异常积累(Rao等,2022)。在患有AD的人的大脑中,也含有铁的自由血红素,也增加了血红素和铁灭活的人脑脑毒蕈碱毒蕈碱乙酰胆碱受体,需要体外记忆(Venters等,1997; Atamna and Frey,frey,2004; Fawcett等,2004; Fawcett等,2002; Fawcett et al。,2002)。鼻内DFO已显示在动物中,以治疗各种脑部疾病,其中铁会异常积累,甚至可以改善正常和健康小鼠的记忆力(Fine等,2020)。这是重新利用现有药物来治疗PD,AD,中风和其他脑部疾病的一个例子,通过使用非侵入性递送以绕过血脑 - 脑 - 障碍物,并靶向大脑。对DFO作为对神经退行性疾病的潜在治疗的兴趣,鉴于最近认识到,基于不受管制的铁水平的一种调节细胞死亡形式,依赖于神经退行性疾病和神经侮辱的形式(Stockwell,2022222)。 促进铁水平响应的铁凋亡会导致脂质过氧化,活性氧(ROS)产生,线粒体功能障碍以及神经炎性反应导致细胞和神经元损伤(Tang等,2020; Jarrahi等; Jarrahi等; Jarrahi等,2020年)。对DFO作为对神经退行性疾病的潜在治疗的兴趣,鉴于最近认识到,基于不受管制的铁水平的一种调节细胞死亡形式,依赖于神经退行性疾病和神经侮辱的形式(Stockwell,2022222)。促进铁水平响应的铁凋亡会导致脂质过氧化,活性氧(ROS)产生,线粒体功能障碍以及神经炎性反应导致细胞和神经元损伤(Tang等,2020; Jarrahi等; Jarrahi等; Jarrahi等,2020年)。
这些通知遵循了最近的通知,授予了基于州的医疗保健扩展合作社的最多15赠与,以加快以患者为中心的结果的传播和实施,从而将研究证据用于医疗保健服务。国家协调中心将为医疗保健扩展合作社提供技术援助,学习网络和沟通以及传播指导。
脑部炎症,小胶质细胞和巨噬细胞的密度增加,是阿尔茨海默氏病的重要组成部分,也是潜在的治疗靶点。然而,它的表征不完全,尤其是在疾病开始于65岁之前开始的PA,因此具有很少的共同病理。炎症已用转运蛋白(TSPO)PET有效成像,但是大多数炎症宠物示踪剂无法用低诱因TSPO RS6971基因型对受试者进行成像。在重要的开发中,具有任何TSPO基因型的参与者可以使用新型的示踪剂(11 C-ER176)成像,该示踪剂比当前可用的其他TSPO示踪剂具有很高的结合势和更有利的代谢物概况。我们应用了11个C-ER176,以检测由早期发作的阿尔茨海默氏病引起的轻度认知IM对(MCI)中的脑部炎症。此外,我们试图将炎症,体积损失,淀粉样蛋白β(aβ)和tau的大脑定位相关联。我们研究了25例早期发作MCI(平均年龄59±4.5岁,10位女性)和23种健康对照(平均65±6.0岁的女性,12岁女性)的脑部炎症,这两组在所有三种Tspo-tspo-tspo-tspo-tspo-tspo-tspo-tspo-tspo-tspo-Inting亲和力中均相似。11 C-ER176使用动脉输入功能获得的总分布量(V t)在患者和对照组之间使用素和区域分析进行了比较。除了炎症PET外,大多数MCI患者还具有β(n = 23)和tau PET(n = 21)。对于β和tau示踪剂,使用小脑灰质作为参考区域计算标准吸收值比。数据校正了部分体积效应。确定了三个示踪剂之间的区域相关性。使用标准神经心理学工具研究了认知表现。是由早期发作的阿尔茨海默氏病引起的,默认网络中存在炎症,双侧和右侧杏仁核在前颞叶和侧向颞叶和顶叶的皮层中具有统计学意义。在地形上,炎症与tau最强烈地共定位(r = 0.63±0.24)。该相关性高于tau(r = 0.55±0.25)和β(0.43±0.22)的β(r = 0.55±0.25)和炎症的共定位。炎症与萎缩至少共定位(-0.29±0.26)。可以在参与者中检测到这些区域相关性,其中三种RS6971 TSPO多态性中的任何一个。阿尔茨海默氏病与疾病相关区域的炎症与认知评分受损相关。我们的数据强调了在阿尔茨海默氏病过程中炎症(一种潜在的治疗靶标)的重要性。此外,它们支持这样的观念:如实验组织和动物模型所示,人类中tau的繁殖与脑炎症有关。
单细胞凝胶电泳测定法,也称为彗星测定法,是一种广泛使用的方法,可在视觉上评估DNA损伤。受到碱性条件的影响,具有不同分子量和电荷的DNA分子在电场中表现出不同的行为。未损坏的DNA分子保留在细胞核内,并在电泳过程中显示出最小的迁移,而变性的DNA片段则从核中迁移。遗传物质从细胞核到尾部的迁移增加,称为“彗星损伤”,是DNA损伤的量度。彗星测定基本上涉及量化通过光学显微镜获得的图像[5]。此外,人类8-羟基-2-脱氧鸟苷(8-OHDG)ELISA测定是一种精确的体外定量技术,用于检测人类唾液,血清,尿液和质量样品中的8-OHDG。8-OHDG是由于鸟嘌呤的羟基自由基攻击引起的活性氧(ROS)诱导的DNA碱基修饰。通过ELISA对8- OHDG浓度的量化由于其稳定性而变得越来越流行,
纵向人群中的仅病例设计是识别影响疾病进展的疾病结果基因,途径和新颖目标的宝贵资源。这在阿尔茨海默氏病(AD)中特别相关,在阿尔茨海默氏病(AD)中,纵向人群衡量疾病的“进展”,这是由认知能力下降率定义的。在临床上,很少有AD的药物靶标是临床上的,而表型异质性是临床研究和基础科学的障碍。在四个队列中(n = 7241),我们进行了全基因组的关联研究(GWAS)和门德尔随机化(MR),以发现与进展并评估因果关系相关的新颖目标。我们通过得出AD风险和严重性的多基因风险评分(PR)来测试患者分层的机会,并测试了这些评分在预测进展中的价值。全基因组关联研究鉴定出与基因组显着性下进展相关的基因座(α= 5×10-8); MR分析没有提供明显的证据表明,AD患者的认知能力下降与脑,脑脊液(CSF)和血浆中的蛋白质水平之间存在关联。AD风险的多基因风险评分并不能可靠地从缓慢的进步者中迅速分层;然而,一项更深入的研究发现,APOEε4状态预测淀粉样蛋白β和tau阳性与阴性患者(额外的APOEε4等位基因= 5.78 [95%置信区间:3.76–8.89],p <0.001,p <0.001),当限制为可用的CSF生物标记数据的患者时。,在临床上相关的生物标志物表明诊断异质性的情况下,有证据表明先验确定的遗传危险因素可能具有这些结果没有提供证据表明与记忆率下降率有关的大效应,常见的基因座,表明基于常见的遗传危险因素的患者分层可能有限。
在1916年发现胰岛素受体(IRS)和随后胰岛素降血糖作用的证明中,IRS在控制外周组织中控制葡萄糖代谢方面的关键功能[1,2]。 通过将包括GLUT 4在内的葡萄糖转运蛋白的易位升至质膜,胰岛素可以增强葡萄糖转运到细胞中,并促进外周组织中的葡萄糖利用率。 除了葡萄糖代谢外,胰岛素还会影响蛋白质的合成,细胞分裂和生长。 从历史上看,人们认为大脑是胰岛素不敏感的器官,IR功能主要是外围的。 从观察到循环胰岛素水平似乎对全脑葡萄糖的吸收没有影响的观察得出[3]。 但是,最后一次进行的研究在1916年发现胰岛素受体(IRS)和随后胰岛素降血糖作用的证明中,IRS在控制外周组织中控制葡萄糖代谢方面的关键功能[1,2]。通过将包括GLUT 4在内的葡萄糖转运蛋白的易位升至质膜,胰岛素可以增强葡萄糖转运到细胞中,并促进外周组织中的葡萄糖利用率。除了葡萄糖代谢外,胰岛素还会影响蛋白质的合成,细胞分裂和生长。从历史上看,人们认为大脑是胰岛素不敏感的器官,IR功能主要是外围的。从观察到循环胰岛素水平似乎对全脑葡萄糖的吸收没有影响的观察得出[3]。但是,最后一次进行的研究