随着有关生物数字交互的知识不断涌现,人机交互研究人员有了新的机会将生物学作为设计和计算材料进行整合。我们举办研讨会的目的是将有兴趣探索下一代生物人机交互和探索涉及不同背景、规模和利益相关者的新型生物数字界面的跨学科研究人员聚集在一起。研讨会旨在为围绕生物数字界面的人机交互机会和方法提供一个互动讨论、演示和集思广益的空间。我们邀请来自学术界和工业界的研究人员提交以下领域的简短立场文件:合成生物学、生物电路、DIYBio、仿生界面、生命界面、生命人工制品和生物伦理学。我们将根据适合度、激发讨论的能力和对人机交互的贡献来评估提交的内容。在我们的网站上,我们提供了该领域过去工作的例子,以帮助启发和指导立场文件。我们的网站将提供整个研讨会的录音
摘要:这项研究的目的是研究以不同浓度的锌(Zn)氨基酸对犊牛中免疫,抗氧化能力和肠道菌群组成的影响。基于添加到饲料中的锌补充量的量,将24个一个月的健康安格斯犊牛随机分为三组(每组四个男性和四个女性):40 mg/kg dm; B组,80 mg/kg DM;和C组,120 mg/kg DM。当犊牛达到三个月大(断奶时期)时,实验结束了。与组相比,C组的饮食锌氨基酸含量的增加促进了犊牛的生长,C组平均体重增加增加了36.58%(p <0.05)(p <0.05)。随着饮食锌氨基酸含量的增加,血清免疫功能的指标最初增加然后减少。特别是,A组和B组中免疫球蛋白M的含量高于C组(P <0.05),而B组中白介素-2的含量高于其他两个组(P <0.05)。此外,B组犊牛血清中超氧化物歧化酶和总抗氧化剂的含量高于C组(P <0.05),MDA水平低于C组(P <0.05)。此外,B组肠道肠道菌群中的α多样性高于A组和C组(P <0.05);主要的门是坚硬和杆菌的,而主要的属是未分类的氯吡啶甲甲状腺顺c和ruminococcus。线性判别分析表明,B组牛肉中细菌的相对丰度高于A组中的小牛的相对丰度,并且与实验组相比,Prevotellaceae-UCG-003的相对丰度更高。调节肠道菌群的平衡,从而促进犊牛的健康生长。
由于政府政策不断促进绿色替代品对有毒石化物质的替代品,最近在开发绿色腐蚀抑制剂方面的研究工作已经加剧。当前工作的理解是开发出源自4-氨基氨基氨酸的新型绿色和可持续的腐蚀抑制剂,以有效防止在腐蚀性环境中碳钢腐蚀。重量法被用于研究4--((呋喃-2-甲基甲基)氨基)反吡啶(FAP)和4-(((((吡啶-2-基甲基)氨基)抗吡啶)抗吡啶(PAP)的敏感性钢(1 M HCl中)1 M HCl。FAP和PAP分组为量子化学计算。dft用于使用在HCl中测试的抑制剂来确定碳钢腐蚀抑制的机理。结果表明,这些经过测试的抑制剂可以有效抑制1.0 M HCl的低碳钢腐蚀。在0.0005 m时,这些抑制剂的FAP和PAP效率分别为93.3%和96.5%。这些抑制剂在低碳钢表面遵守Langmuir吸附等温线。吸附能量的值,表明FAP遵循化学和物理吸附。
摘要:浸泡是制作速度的重要步骤。tempeh发酵通常涉及能够生产蛋白酶以分解蛋白质分子中肽键的自然存在。这项研究评估了在天然发酵过程中浸泡在蒸馏水中的12、24、36和48小时的蛋白质和氨基酸含量。在这项研究中,使用Kjeldahl技术确定粗蛋白,从蛋白质水解中确定氨基酸,并列举蛋白水解细菌以进行总板计数,并使用Vitek 2.0紧凑型系统进一步识别。结果表明,浸泡的千斤顶豆具有较高的蛋白质和氨基酸含量,人体需要16个必需氨基酸。浸泡的千斤顶豆的蛋白质含量在24和36 h时为35%到32%,48小时的蛋白质含量不等。浸泡12小时产生的氨基酸浓度最高,为38,000 mg/kg l-谷氨酸,最低14,000 mg/kg l-丙啉。七个孤立的细菌在脱脂牛奶琼脂上显示出蛋白水解活性,其菌落周围的透明区域为3.00 mm至10.65 mm。鉴定出的细菌是pediocococcus pentococcus pentocococcus,stenorophomonas一个元素粒细胞,sakazakii和klebsiella pneumonia ssp。总而言之,乳酸杆菌科和肠杆菌科是坦佩发酵过程中的主要细菌,表明在浸泡条件下,这些微叶酸盐之间的协同相互作用是它们在这种敌对环境中生存的一部分。
氨基糖苷类(阿米卡星、庆大霉素和妥布霉素)是用于革兰氏阴性菌感染肠外治疗的高效杀菌抗生素。由于可能出现肾毒性和耳毒性(这些毒性随着使用时间延长而增加),因此通常应限制使用剂量少于 3 剂(持续时间为 72 小时),例如用于尿路脓毒症的经验性治疗。氨基糖苷类与某些细胞壁活性药物(例如青霉素、糖肽)联合使用时,可提供有用的协同杀灭作用,从而提高链球菌或肠球菌性心内膜炎等严重感染的临床治愈率。所有需要使用庆大霉素超过 72 小时的患者都需要传染病 (ID) 输入和 AMS 批准才能接受持续治疗。CHQ 抗菌药物管理网站上列出了庆大霉素和妥布霉素的预批准适应症。阿米卡星是一种受限制的抗菌药物,在开具处方或使用前需要输入身份证明并获得 AMS 批准。为了确保疗效、最大程度降低毒性并限制耐药性的蔓延,必须仔细开具阿米卡星、庆大霉素和妥布霉素治疗处方并进行监测。
摘要:分蘖角度是决定禾谷类作物株型和产量的重要性状。在重力刺激下,分蘖角度部分由LAZY1(LA1)蛋白在细胞核和质膜之间的动态重新分配来控制,但其潜在机制尚不清楚。在本研究中,我们基于对水稻(Oryza sativa L.)扩散分蘖突变体la1 G74V的分析,鉴定并描述了LA1的一个新的等位基因,该突变体在该基因预测的跨膜(TM)结构域编码区中发生非同义突变。该突变导致地上部重力性完全丧失,从而导致植物匍匐生长。我们的研究结果表明,LA1不仅定位于细胞核和质膜,而且定位于内质网。去除LA1中的TM结构域会使植物表现出与la1 G74V相似的扩散分蘖表型,但不影响质膜定位;因此,它与玉米中的直系同源物 ZmLA1 有区别。因此,我们认为 TM 结构域对于 LA1 的生物学功能是必不可少的,但该结构域并不决定蛋白质在质膜上的定位。我们的研究为 LA1 介导的地上性调控提供了新的见解。
监测氨基糖苷类药物浓度的目的是确保用药充分并避免药物过量。通常,应在首次用药后、剂量改变后以及如果患者剂量稳定则每周监测两到三次药物浓度。但是,如果患者病情严重、肾功能不佳或药代动力学可能发生变化(例如大手术后、通过引流管等大量液体流失、败血症消退),则可能需要更频繁地监测药物浓度。如果您不确定应多久监测一次患者,请向资深药剂师寻求帮助。应在治疗前和治疗期间监测肾功能(血清肌酐)。
氨基糖苷类的杀菌活性是浓度依赖性的,这意味着峰值(即 C max )与最低抑菌浓度之比(C max :MIC)越高,细菌杀灭的速度和程度就越大。这也有助于防止亚群耐药性。当暴露浓度约为 MIC 的 8 到 10 倍时,可实现最佳活性。高剂量延长间隔 (HDEI) 给药策略可优化此药效学特性,而不会增加毒性风险。使用 HDEI 时,目标峰值通常比传统峰值高 2-3 倍;谷值保持不变。并非所有患者都适合使用 HDEI 氨基糖苷类;请参阅正文以了解其他纳入/排除标准。C. 囊性纤维化和原发性纤毛运动障碍中的肺恶化给药
使用时间相关单光子计数 (TCSPC) 装置获取时间分辨的 PL 衰减。PL 衰减曲线使用指数方程拟合:I (t)= A exp(-t/τ),其中 A 是指数项的振幅,τ 是 PL 寿命。I 代表归一化 PL 强度,t 是时间。PLQY 定义为辐射复合速率常数 (Kr) 与辐射和非辐射复合速率常数 (Knr) 之和的比率,由公式给出