晚结直肠癌患者(CRC)缺乏有效的疗法。CRC肿瘤微环境由于代谢改变和与微生物群的接近度改变了代谢废物。代谢物废物在肿瘤发育,进展和耐药性中的作用尚不清楚。我们生成了CRC的自自转移小鼠模型,并使用了无偏的多OMIC分析来揭示肿瘤氨的稳健积累。高氨水水平诱导T细胞代谢重编程,增加衰竭并减少增殖。CRC患者的血清氨含量增加,与氨相关的基因信号与T细胞反应改变,患者不良结局以及对免疫检查点封锁的反应不足有关。我们证明,增强氨清除率会重新激活T细胞,减少肿瘤生长并延长生存率。此外,降低肿瘤相关的氨们会增强抗PD-L1疗效。这些发现表明,增强氨排毒可以重新激活T细胞,突出了一种增强免疫疗法功效的新方法。
前两个相互联系,并与氢的来源相关。Haber-Bosch工艺需要氢,并且可以来自任何地方,包括绿色氢。作为一种实际问题,经济上获得大量氢的最简单方法是通过SMR,它将碳副产品释放到大气中。这是灰色氢,它用于所有氨过程的大部分。它是与氨相关的碳排放的主要来源,但不是唯一的碳排放。因此,实施正确的自动化和测量仪器技术对于缓解策略至关重要,可以帮助提高能源效率并减少排放。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2024年8月5日。 https://doi.org/10.1101/2024.08.05.606590 doi:Biorxiv Preprint
Woodside已达成具有约束力的协议,以获取100%的OCI清洁氨持有B.V.及其在得克萨斯州博蒙特(Project)的碳氨项目(项目),以实现大约23.5亿美元的全面考虑。该项目正在建设中,目标是从2025年开始生产第一氨,从2026年开始降低碳氨。考虑因素包括通过完成第一阶段(第1阶段)的资本支出。伍德赛德首席执行官梅格·奥尼尔(Meg O'Neill)表示,这次收购支持伍德赛德(Woodside)在能源过渡中蓬勃发展的策略。“此交易将伍德赛德在不断增长的下碳氨市场中定位。低碳氨的潜在应用是在发电,海洋燃料和工业原料中,因为它会取代高发射燃料。“预计到2050年,全球氨的需求将翻倍,碳氨
简单地说,绿色氢是通过使用可再生能量将水分成氢和氧气而产生的。绿色氨是由绿色氢制成的,其工艺也由可再生能源提供动力。绿色氢和氨的产生既有正面和负面的环境和社会影响。绿色氢(见表11.1)被视为全球向可持续能量和净零排放的全球温室自由能的主要载体。动量正在增长,以快速扩大绿色氢的产生,以满足IPCCC GHG减少靶标。它正在作为存储能源的一种选择(另请参阅第13章,有关其他储能选项),从具有基于氢的燃料的可再生能源可能会在长途运输(从拥有丰富能源资源的地区到数千公里远的地区)。以绿色氢的形式采用的绿色氨与绿色
对不可再生、对环境不友好的氮肥(如无水氨和硝酸氨)的巨大依赖对美国的农业和工业都构成了重大挑战。仅在明尼苏达州,每年的氮肥进口额就达到 4 亿至 8 亿美元,凸显了当前做法带来的经济压力和环境影响。当前氮肥工业技术以哈伯-博施法为主,该法每年提供超过 1.3 亿吨氨,同时养活了全球约 40% 的人口。然而,它也造成了全球约 2% 的能源消耗和 1.5% 的温室气体 (GHG) 排放。哈伯-博施法的反应条件分别在 200 至 400 个大气压和 400 至 600°C 范围内。除了环境挑战之外,这种极端的温度和压力条件也反映了高昂的资本成本。因此,这些缺点为创新提供了机会,并且迫切需要一种更节能、更具成本效益、温室气体排放更低的工艺,以减轻环境影响并促进农业可持续发展。
摘要:海事行业可持续发展的主要目标是向碳中性燃料过渡,目的是减少海上运输的排放。ammonia是氢存储的有前途的竞争者,将来为无CO 2的无能源系统提供了潜力。值得注意的是,氨列出了氢存储的有利属性,例如其高容量氢密度,低储存压力需求和长期稳定性。但是,重要的是要认识到,由于氨的毒性,易燃性和腐蚀性,氨还带来了挑战,与其他替代燃料相比,提出了更严重的安全问题,需要解决这些问题。这项研究试图探索卡车到船上氨掩体期间泄漏气体的分散特性,从而提供了有关建立适当安全区域的见解,以最大程度地减少与此过程相关的潜在危害。研究涵盖了在各种操作和环境条件下进行的参数研究,包括不同的铺位条件,气体泄漏率,风速和氨有毒剂量。效果是用于结果分析的商业软件,用于分析特定方案。重点是假设的氨燃料卡车37,000 L,加油为8973 Deadgeight Tonnage(DWT)服务船,其水箱容量为7500 M 3
摘要:在这项研究中,开发了使用ZnO和还原氧化石墨烯(RGO)复合材料的室温氨气传感器。传感器制造涉及反向偏移和静电喷雾沉积(ESD)技术的创新应用来创建ZnO/RGO传感平台。使用XRD,FT-IR,FESEM,EDS和XP对所得材料的结构和化学特性进行了全面分析,并通过UV-臭氧处理实现了RGO降低。电性能,表明由于紫外线处理而引起的电导率增强,并提高了ZnO -RGO异质结的形成带来的电荷迁移率。暴露于氨气,导致传感器的响应性增加,较长的紫外线治疗持续时间提高了较高的敏感性。此外,测量了响应和恢复时间,10分钟的紫外线处理的传感器显示出最佳的响应能力。绩效评估显示对氨浓度的线性响应性具有高R 2值。与丙酮和CO气体相比,传感器还表现出对氨的特殊选择性,使其成为氨气检测的有前途的候选者。这项研究显示了基于ZnO/RGO的氨气传感器的出色性能和潜在应用,这对气体检测领域有很大的贡献。
在环境条件下将硝酸盐(NO3−)电催化转化为NH3(NO3RR)为哈伯-博施法提供了一种有希望的替代方案。优化NO3−向NH3的有效转化的关键因素包括增强中间体在催化剂表面的吸附能力和加快加氢步骤。在此,基于定向演化策略设计了Cu/Cu2O/Pi NWs催化剂,以实现NO3−的有效还原。受益于定向演化过程中形成的富OV的Cu2O相和原始Cu相的协同作用,该催化剂对各种NO3RR中间体表现出更好的吸附性能。此外,在定向演化过程中锚定在催化剂表面的磷酸基团促进了水的电解,从而在催化剂表面产生H+并促进NO3RR的加氢步骤。结果显示,Cu/Cu 2 O/Pi NWs 催化剂表现出优异的 NH 3 FE(96.6%)和超高的 NH 3 产率,在 1 m KOH 和 0.1 m KNO 3 溶液中,在 − 0.5 V 相对 RHE 下为 1.2 mol h − 1 g cat. − 1。此外,催化剂的稳定性因磷酸基对 Cu 2 O 相的稳定作用而增强。这项工作突出了定向演化方法在设计 NO 3 RR 催化剂中的前景。