本文介绍了一种用于雷达应用的新型 X 波段碳化硅 (SiC) 共面波导 (CPW) 单片微波集成电路 (MMIC) 高功率放大器 (HPA) 设计。在设计中,采用了 0.25 μ m γ 形栅极和高电子迁移率晶体管 (HEMT),它们采用了碳化硅基氮化镓技术,因为它们具有高热导率和高功率处理能力。此外,在 8.5 GHz 至 10.5 GHz 的频率范围内,反射系数低于 -10 dB,可产生 21.05% 的分数带宽。此外,MMIC HPA 在 2 GHz 带宽内实现了 44.53% 的功率附加效率 (PAE),输出功率为 40.06 dBm。此外,由于 MMIC HPA 具有高输出功率、宽工作带宽、高 PAE 和紧凑尺寸,因此非常适合用于 X 波段有源电子扫描阵列雷达应用。索引术语 — 有源电子扫描阵列 (AESA) 雷达、共面波导 (CPW)、碳化硅 (SiC) 上的氮化镓 (GaN)、高电子迁移率晶体管 (HEMT)、单片微波集成电路 (MMIC)、高功率放大器 (HPA)。
Josephson行动波参数放大器 / Guarcello的建模,Claudio;瓜里诺(Guerino)Avallone;卡洛男爵; Borghesi,Matteo;头发,西尔维亚; Carapella,Giovanni;安娜·保罗(Anna Paola)装满; Carusotto,Iacopo; Cian,Alessandro; Daniele的Gioacchino; Enrico,Emanuele; Paolo的Falferi;法萨(Fasolo),卢卡(Luca); Faverzani,Marco;费里(Ferri),埃琳娜(Elena); Filatrella,Giovanni; Gatti,Claudio; Giachero,Andrea; Damiano Giubertoni; Veronica Granata;希腊,安吉洛;拉布兰卡(Danilo);狮子座,安吉洛; Ligi,卡洛; Maccarrone,Giovanni; Federica Mantegazzini; Margesin,Benno; Maruccio,朱塞佩; Mauro,君士坦丁; Mezzena,Renato;莫特杜罗,安娜·格拉齐亚; nucciotti,安吉洛;卢卡·奥伯托(Oberto); Origo,卢卡; Pagano,Sergio; Pierro,Vincenzo; Piersanti,卢卡; Rajteri,毛罗; Alessio Rettaroli;里萨托,西尔维亚;范特,安德里亚; Zannoni,马里奥。- 在:IEEE超导性上的IEEE交易。- ISSN 1051-8223。-33:1(2023),pp。1-7。[10.1109/tasc。 2022.3214751]
基于RF-squids的Josephson行动波参数放大器的实验表征利用共振相位匹配方案 / Fasolo,L。;阿伦斯(Ahrens),f。; Avallone,G。;男爵,c。 Borghesi,M。; Callegaro,L。; Carapella,G。;加载,A。P。; Carusotto,i。 Cian,A。; D'Elia,A。; Gioacchino,D。 Falferi,p。; Faverzani,M。; Ferri,E。; Filatrella,G。;猫,c。 Giubertoni,d。; Granata,V。; Guarcello,c。 Labranca,d。;狮子座,a。; Ligi,c。; Livreri,P。; Maccarrone,G。; Mantegazzini,f。; Margesin,b。 Maruccio,G。; Mezzena,r。 Montediro,A。G。; Moretti,R。 nucciotti,a。; Oberto,L。; Origo,L。; Pagano,s。; Piedjou,A。S。; Piersanti,L。; Rettaroli,A。; Rizzato,S。; Tocci,s。; Vante,A。; Zannoni,M。; Giachero,A。; Enrico和..- in:IEEE超导性的IEEE交易。- ISSN 1051-8223。-34:3(2024),p。 1101406。[10.1109/tasc。 2024.3359163]
印度安得拉邦蒂鲁帕蒂 Sri Venkateswara 工程学院电子与计算机系摘要:运算放大器电路用于计算、仪器仪表和其他应用。以前用于仪器仪表的精密运算放大器如今被用于工业和汽车应用。因此,总是需要更高精度的运算放大器。它应该在很宽的温度范围内工作。如今,由于行业趋势是应用标准工艺技术在同一芯片上实现模拟电路和数字电路,互补金属氧化物半导体 (CMOS) 技术已经取代双极技术成为混合信号系统中模拟电路设计的主导技术。两级运算放大器是最常用的运算放大器架构之一。本文介绍了一种基于 CMOS 的运算放大器,其输入取决于其偏置电流,偏置电流为 20µA,采用 180nm 和 90nm 技术设计。在亚阈值区域,由于 MOS 晶体管的独特行为,设计人员不仅可以在低电压下工作,还可以在低输入偏置电流下工作。大多数 CMOS 运算放大器都是为特定的片上应用而设计的,只需要驱动几 pf 的电容负载。在本提案中,介绍了两级全差分 CMOS 运算放大器的设计,并针对各种参数在 180nm 和 90nm 技术中进行了模拟。模拟将使用 Cadence Virtuoso Tool 进行。
摘要 CMOS 技术的扩展允许设计更复杂的系统,但同时也带来了一些可靠性问题。特别是,大幅扩展的微电子技术受到偏置温度不稳定性 (BTI) 老化现象的影响,这种现象导致晶体管阈值电压的绝对值随老化时间增加,从而降低微电子电路的可靠性。在本文中,我们估计了 BTI 对开环配置的运算放大器 (OPAMP) 以及基于 OPAMP 的三个卓越模拟放大器的性能下降。结果表明,BTI 会严重影响所研究电路的性能,并且这种性能下降会随着工作温度的升高而恶化。我们还简要介绍了一种可能的低成本监控方案,用于检测由 BTI 引起的 OPAMP 性能下降。我们的监控器的有效性已通过布局前电气模拟得到验证,结果表明它可以可靠地用于评估 OPAMP 的老化性能下降。
该研究的目的是确定硫化镍薄膜的光学特性,即,来自化学浴沉积方法(CBD)的反射率,吸光度,透射率和能量带隙,与几个波长相关,并与各种紫外线(UV)范围相关,以确定其潜在的效果。使用硫酸盐,硫代硫酸钠和三乙醇胺(TEA)溶液,将镍硫化物薄膜化学沉积。基于Avantes单光束扫描UV-SpectroPhotopormeter,NIS薄膜的光学特性,这是光谱吸光度,反射率和透射率。发现NIS薄膜在所需的波长紫外线范围内具有很高的透明度,用于光疗的应用,低吸收系数可最大程度地减少能量损失和最大化增益,低反射可用于最大程度地减少反射损失,并最大程度地减少光耦合效率和1.98 EV的能量带差异,使其具有1.98 EV的evap em emememememecondoctor材料。nis薄膜中的薄膜被证明具有光疗中光放大器的所需特性特性。
Changes from Revision D (June 2018) to Revision E (July 2018) Page • Corrected typo in Description section ................................................................................................................ 1 • Added TLV9001 5-pin X2SON package to Device Information table ................................................................ 1 • Added TLV9001S 6-pin SOT-23 package to Device Information table............................................................... 1 • Added TLV9004 14-pin and 16-pin WQFN packages to Device Information table ............................................ 1 • Added TLV9001 DPW (X2SON) pinout drawing to Pin Configuration and Functions section............................ 7 • Added TLV9001S 6-pin SOT-23 package to Pin Configuration and Functions section...................................... 7 • Added TLV9004 RTE pinout information to Pin Configuration and Functions section ....................................... 7 • Added DPW (X2SON) and DRL (SOT-553) packages to Thermal Information: TLV9001 table....................... 15 • Added Thermal Information: TLV9001S table to Specifications section........................................................... 15 • Added RUG (X2QFN) package to Thermal Information: TLV9002 table.......................................................... 15 • Added RTE (WQFN) and RUC (WQFN) packages to Thermal Information: TLV9004 table............................ 16
在现代通信标准中,功率放大器(PA)必须在越来越大的动态范围和带宽上实现高效率,同时保持严格的线性要求。效率提高可以通过负载调制体系结构(例如Doherty功率放大器)来实现。但是,基于此概念的放大器通常与线性降解有关。在4G网络中,数字预性用于减轻负载调节的放大器的非线性。但是,5G NR系统的更大带宽和复杂性限制了DPD的适用性。本论文旨在解决高效率功率扩增器的固有线性,以便无需有限的预期,可以充分地进行效率。它专注于负载模块的平衡放大器(LMBA)。LMBA是最近的建筑,作为经典Doherty PA的替代品。这里提出了对LMBA的新数学分析,重点是负载调制轨迹。这种基于阻抗的分析导致开发了一种新方法,用于从主晶体管的载荷测量值中设计线性/有效的功率放大器。将此方法应用于10W gan Hemt,我们表明,在单端配置中具有相似性能的三个不同的放大器在LMBA档案中使用时的性能非常不同。根据我们的理论,LMBA的幅度(AM-AM)和相(AM-PM)畸变取决于负载轨迹。然后,在GAAS技术中使用相同的方法在1W频段1W MMIC放大器上应用。选择它以使相失真最小化,然后可以选择第二个谐波终止以最大化效率。j级第二谐波终止被确定为最佳情况,导致-40.5dBC ACLR(相邻的通道泄漏比),当用10 MHz刺激10 MHz时,在2.4GHz的耗尽效率为40.5%,为8.6db Papr(峰值平均电力比)LTE信号。但是,在这些频率下,第二个谐波终止对功率放大器的效率的影响很小。缺乏这种额外的自由度,不能为缓解AM-PM选择载荷轨迹,并且效率/线性权衡会降低。最后,提出了阻抗不匹配在功率放大器中的起源和影响。研究了输出阻抗不匹配下负载调制平衡放大器的性能。我们观察到,如果未在输出处显示最佳阻抗,则会取消LMBA的效率提高。然后提出了一种新型的双重平衡LMBA,以实现高效率功率放大器中的不匹配弹性。
摘要 本文介绍了一种负载调制平衡放大器 (LMBA) 的设计方法,重点是减轻 AMPM 失真。通过引入二次谐波控制作为设计自由度,可以选择复杂的负载轨迹来补偿设备中的 AMPM 非线性,而不会显著影响效率。数学推导伴随着基于闭式方程的设计程序,以仅基于负载牵引数据来制造 LMBA。通过对三种不同设计进行测量比较来验证该理论,这些设计在伪 RF 输入 Doherty 类 LMBA 配置中以 2.4 GHz 运行,具有 J 类、-B 类和 -J* 类主 PA。J 类原型的性能优于其他设计,在峰值输出功率和 6 dB 回退时分别具有 54% 和 49% 的漏极效率,并且在此功率范围内只有 4 度的 AM-PM。当使用 10 MHz、8.6 dB PAPR LTE 信号驱动时,无需数字预失真,即可实现 40.5% 的平均效率和优于 − 40.5 dBc 的 ACLR。
(17)