摘要 — 统计技术经常用于预测电子系统的性能。工艺变化考虑了制造时材料参数的不确定性,会对模拟集成电路的产量产生不利影响。对由于制造参数变化而导致的模拟电路关键输出参数变化进行统计分析,以预测产量,是模拟芯片制造中必不可少的步骤。在这项工作中,我们使用严格的统计方法来检查典型模拟电路的性能。我们设计了一个 65 nm 技术的两级 CMOS 差分放大器配置,使用 ACM 模型参数来检查工艺变化下的产量。我们采用三种不同的蒙特卡罗模型(均匀、高斯、最坏情况)来检查设计的 CMOS 差分放大器关键性能参数的统计变化。据报道,在典型工艺参数变化 10% 的情况下,关键差分放大器参数、最大增益、增益裕度和相位裕度都会发生变化。在最坏情况分布的情况下,变化最大,而在高斯分布的情况下,变化最小。结果表明,工艺变异对设计的CMOS差分放大器的成品率有显著影响。在高斯分布的情况下,增益裕度(dB)、相位裕度(度)和最大增益(dB)的标准差分别为11、25和24。
•AEC-Q100有资格用于汽车应用的资格: - 温度1级:–40°C至 +125°C,T A•功能安全性能 - 可用于辅助功能安全系统设计的文档•H-Bridge Smart Gate驱动程序 - 4.9V至37V至37V(40V ABS。max) operating range – Doubler charge pump for 100% PWM – Half-bridge and H-bridge control modes • Pin to pin gate driver variants – DRV8106-Q1: Half-bridge with inline amplifier – DRV8706-Q1: H-bridge with inline amplifier • Smart gate drive architecture – Adjustable slew rate control – 0.5mA to 62mA peak source current output – 0.5mA to 62mA peak sink current output – Integrated dead-time handshaking • Low-side current shunt amplifier – Adjustable gain settings (10, 20, 40, 80V/V) – Integrated feedback resistors – Adjustable PWM blanking scheme • Multiple interface options available – SPI: Detailed configuration and diagnostics – H/W: Simplified control and less MCU pins • Spread spectrum clocking for EMI reduction • Compact VQFN package with wettable flanks •综合保护功能 - 专用驱动器禁用引脚(DRVOFF) - 供应和调节器电压监视器 - MOSFET V DS过电流监视器 - MOSFET V GS GATE故障监视器 - 电荷泵逆极性MOSFET - 离线打开负载和短路负载和短路诊断 - 设备热警告和关闭警告和关闭状态 - 故障警告 - 故障销钉(nforts Intrump PIN)
• 放大器从低频到 40GHz • 功率从 1W 到 100kW • A 类和 AB 类放大器 • CW/脉冲 • 内置不同形式 - 模块、机架或定制外壳 • 内置保护、启用/禁用输入、高反向隔离和更多功能 • 选项
技术转移与行业界面部(TTID),PPEG空间应用中心(SAC),ISRO AMBAWADI VISTAR,JODHPUR TEKRA,AHMEDABAD -380 015电子邮件:ttid@sac.isro.gov.inhttps.in
我们专注于固态射频和微波功率放大技术,高度重视客户满意度。利用我们内部的射频工程专家团队和先进的生产设施,我们制造出高达 40GHz 和 100kW 功率的强大射频放大器。从定制要求到现成供应,我们与客户合作,提供具有行业领先保修的经济高效的放大器。请参阅以下我们的热门型号,并与我们联系以讨论您的定制要求。
误差放大器作为开关电源设计中的重要元件,用于将输出电压的误差信号放大,并根据误差信号产生反馈控制。误差放大器的性能直接影响开关电源的输出精度和瞬态响应。在传统的隔离电源设计中,通常使用光耦来实现隔离误差信号的传输,如图2所示。本应用笔记对基于光耦的方案和基于隔离放大器的方案(CA-IS310x)进行了比较,并讨论了CA-IS310x在隔离开关电源设计中的优势,并给出了典型应用中的反馈环路分析和设计建议。2 隔离电源工作原理
本文介绍了一种使用工具命令语言 (TCL) 脚本语言自动完成可变增益放大器 (VGA) 布局设计的方法。TCL 自动化涉及编写脚本来自动执行设计综合、仿真、验证和布局生成等任务。所提出的方法包括两个步骤:首先,生成描述所需布局的 TCL 脚本,然后执行 TCL 脚本以生成布局。TCL 脚本由布局生成器生成,该生成器将 VGA 的规格作为输入,并生成根据 TCL 命令描述布局的 TCL 脚本。然后由布局放置器执行 TCL 脚本,该布局放置器根据 TCL 脚本的指令将单元放置在布局中。所提出的方法已经在给定的 VGA 电路上实现并进行了评估。结果表明,所提出的方法可以高精度、高效地自动完成 VGA 的布局设计。© 2024 由索哈杰大学工程学院出版。DOI:10.21608/SEJ.2023.235841.1046
摘要:本文介绍了为对全差分放大器(FDDA)原型芯片样品进行实验评估而开发的测量电路和测试板。被测设备(DUT)是采用130nm CMOS技术设计和制造的超低压、高性能集成FDDA。FDDA的电源电压为400mV。在带有制造的FDDA芯片的测试板上实现了测量电路,以评估其主要参数和特性。在本文中,我们重点评估以下参数:输入失调电压、共模抑制比和电源抑制比。开发并验证了测试板。测得的测试板误差为38.73mV。FDDA的失调电压为-0.66mV。测得的FDDA增益和增益带宽分别为48dB和550kHz。除了测量板外,还开发了一个图形用户界面,以简化测量期间对被测设备的控制。
在图4,M1和M2的电路中是N型MOS晶体管,M3和M4是P型MOS晶体管。这些晶体管在CMOS拓扑中配置差分放大器,以最大程度地减少功率消耗[6]。偏置电路是由编程电流(I Ref)控制的镜电路(M5和M6),可为差分和通用源放大器提供适当的偏置电流。补偿电路涉及频率补偿的技术,其中使用这些技术的目的是避免产生正面反馈的意外创建,从而导致Op-Amp输出中的振荡并控制对单位步骤功能的响应[7]。频率补偿技术包括磨坊主补偿技术,无效电阻技术以及电压缓冲液或电流缓冲技术。
Tekbox提供了一个完整的解决方案,用于负担得起的预定率进行免疫测试:耦合解耦网络以及合适的校准适配器和150欧姆过渡; BCI探针,合适的调制宽带功率放大器和Emcview Pro软件。带有跟踪生成器的第三方频谱分析仪用作信号源。TBMDA-BCI25调制放大器提供了必要的带宽和调制,用于使用ISO 11452-4在1 MHz至400 MHz的频率范围内使用BCI探针进行的免疫测试。它的设计是由信号发生器或跟踪频谱分析仪的发电机驱动的。在1 MHz至400 MHz的频率范围内,具有1 dB压缩点的1 dB压缩点,它可以将测试水平生成至II级的测试水平,并使用AM和IV级使用CW。内置的AM / PM-调制器允许使用跟踪生成器作为信号源。TBMDA-BCI25具有足够的增益,可以使用Spectrum Analyzer跟踪生成器提供的0 dBM实现最大输出功率。除了1 kHz,80%AM外,TBMDA-BCI25还提供了内置的调制能力,以产生1 kHz,50%占空比PM信号。在PM模式下,TBMDA-BCI25还可以生成217 Hz信号,其占空比为12.5%,以模拟手机TDMA噪声。