标准模型(比如 PAC 框架)并未捕捉到标记数据和未标记数据之间的区别,而这种区别催生了主动学习领域,在主动学习中,学习者可以要求特定点的标签,但每个标签都需要付费。这些查询点通常从未标记的数据集中选择,这种做法称为基于池的学习 [10]。目前也有一些关于人工创建查询点的研究,包括大量理论成果 [1, 2],但这种方法存在两个问题:首先,从实用角度来看,这样产生的查询可能非常不自然,因此人类很难进行分类 [3];其次,由于这些查询不是从底层数据分布中挑选出来的,因此它们在泛化方面的价值可能有限。在本文中,我们重点关注基于池的学习。
印度政府化学和化肥部药品部 (DoP) 已委托 Biovantis Healthcare Private Limited (Biovantis) 编写本报告,该报告以 Biovantis 的独立研究和分析为基础。保留所有权利。本报告和相关工作的所有版权均归药品部 (DoP) 和 Biovantis Healthcare Private Limited 所有。本报告利用了一手和二手数据以及从各种来源获取的信息,例如文章(同行评审和一般)和对顶尖专家的访谈。专家和关键意见领袖表达的观点仅代表个人观点,不应代表他们所从事专业工作的组织。本报告仅供参考。尽管在编写本报告的过程中已尽应尽的义务确保信息准确无误,符合 Biovantis 和 DoP 的知识和信念,但报告内容无论如何都不能理解为专业建议的替代品。 Biovantis 和 DoP 既不推荐也不认可本报告中提及的任何特定产品或服务,也不对因依赖本报告而做出的决策结果承担任何责任。对于因用户依赖或接受本报告任何部分的指导而导致的任何行为或疏忽而产生的任何直接或间接损失,Biovantis 和 DoP 均不承担任何责任。
“我们获得了该技术的演示,希望了解 Cyber AI Analyst 功能如何工作,结果令人印象深刻……虽然这是一份详细的报告,但报告顶部的简短摘要有效地快速概述了情况。摘要使用的术语即使是非技术专业人士也能理解,并且无需查看细节即可提供见解,包括有关如何确保系统从事件中完全恢复的可行建议。”
教职人员@莱斯大学、新加坡国立大学、于默奥大学、浙江大学、北卡罗来纳大学、林雪平分校、印度医学科学院、卡本代尔大学、文图拉大学、南洋理工大学、以色列理工学院 博士后@苏黎世联邦理工学院(3)、麻省理工学院(2)、麦吉尔大学、图灵大学 其他@Kandou bus、SwissRE、TUM
本文分析了实现 AGI 的不同方法,包括人脑模拟、AIXI 和集成认知架构。首先,本文定义了 AGI,并说明了其要求。对于提到的每种提议方法,都总结了相关方法,并详细介绍了其关键流程,展示了其运作方式。然后,分析了列出的每种方法,并考虑了各种因素,例如技术要求、计算能力和对要求的充分性。结论是,虽然有多种方法可以实现 AGI,例如人脑模拟和集成认知架构,但实现 AGI 最有希望的方法是集成认知架构。这是因为发现人脑模拟需要扫描技术,而这些技术很可能要到 2030 年代才能实现,因此不太可能在那之前创建出来。此外,集成认知架构降低了计算要求,并具有适合通用智能的功能,使其成为实现 AGI 的最有可能的方法。
摘要 全基因组测序 (WGS) 和全外显子组测序 (WES) 在乳腺癌 (BC) 研究中至关重要。它们在检测易感基因、风险分层和识别罕见单核苷酸多态性 (SNP) 方面发挥着作用。这些技术有助于发现各种综合征与 BC 之间的关联,了解肿瘤微环境 (TME),甚至识别可能对未来个性化治疗有用的未知突变。基因分析可以发现 BC 的相关风险,并可用于肿瘤形成风险高的患者的早期筛查、诊断、特定治疗计划和预防。本文重点介绍 WES 和 WGS 的应用,以及如何发现与 BC 相关的新候选基因以帮助治疗和预防 BC。
简介 十一年前,马希尔 (Maher) 问道:“谁在创造?” (Maher 2012),并提出了几个创造性应用的分析空间,包括构思和互动两个维度。马希尔的问题引出了乔丹诺斯 (Jordanous) 的 PPP 视角框架,其中创造行为可以由人类或人工智能 (Jordanous 2016) 执行,以及坎托萨洛 (Kantosalo) 和塔卡拉 (Takala) 的 5C 框架,其中创造行为由人类和人工智能共同组成的集体执行 (Kantosalo and Takala 2020)。1然而,对于人与人工智能互动中创造力的位置,人们的共识较少。混合主动性创造性界面方法提出了一组基本的细粒度活动,这些活动可以由人类或人工智能以某种结构化对话的形式执行(Deterding 等人,2017 年;Spoto 和 Oleynik,2017 年),随后扩展到生成应用(Muller、Weisz 和 Geyer,2020 年),针对特定算法方法进行了改进(Grabe、Duque 和 Zhu,2022 年),并针对其他算法方法进行了批评(Zheng,2023 年)。虽然这些方法生成了重叠的分析动作词汇,但它们并没有解决创造力在何处发生(以及由谁或什么通过这些动作发生)的问题。在这篇短文中,我们提供了对该问题的一个答案的几个例子。我们重新利用 Kantosalo 和 Takala (2020) 的 5C 中的集体概念,提出一种类型的创造力可能会在以下互动空间中不对称地出现 (Rezwana and Maher 2022)
● 实验 - 探索 - 利用 ● MVP 设计:尽快提供最小可行产品,然后逐步改进 ● 每个探索或利用轨道都是一个有项目经理的项目 ● 项目经理负责明确的项目计划和每周状态更新 ● 每个问题/想法/倡议都添加到待办事项中 ● 与 VDP(VDAB 数据平台)持续保持一致
最近,由于它能够从大量未标记的数据中学习,因此蒙版的图像建模(MIM)引起了很大的关注,并且已被证明对涉及自然IM的各种视觉任务有效。同时,由于数量的未标记图像以及质量标签的费用和困难,预计自我监督的学习3D医学图像的潜力预计将是巨大的。但是,MIM对医学图像的适用性仍然不确定。在本文中,我们证明了掩盖的进度建模方法除自然图像外,还可以推进3D医学图像分析。我们研究掩盖图像建模策略如何从3D医疗图像段的角度利用绩效,作为一项代表性的下游任务:i)与天真的对比度学习相比,掩盖的图像建模ap-par-ap-par-ap-par casge casge casge casgence convelence contergencience convergence contressed of被监督的火车的融合甚至更高(1.40×)得分(1.40×),并最终会产生较高的股票; ii)预测具有较高遮盖比和相对较小的斑块大小的原始体素值是用于医学图像的非琐碎的自我监督借口任务; iii)重建重建的轻量级解码器或投影头对3D医疗图像的掩盖图像模型非常可靠,该图像可以加快训练并降低成本; iv)最后,我们还研究了应用不同图像分辨率和标记的数据比率的不同实际情况下的MIM方法的有效性。匿名代码可在https://github.com/zekaichen/mim-med3d上找到。