当今集成电路 (IC) 供应链的全球化带来了许多硬件安全问题。其中一个主要问题是硬件木马 (HT) 被纳入部署在安全关键和任务关键型系统中的 IC [1], [2]。HT 是对 IC 的故意恶意修改,旨在泄露有价值的数据、降低性能或导致完全故障,即拒绝服务。HT 可以在不同阶段插入片上系统 (SoC),例如由不受信任的 EDA 工具提供商、不受信任的 IP 供应商、插入测试访问机制的不受信任的 SoC 集成商或不受信任的代工厂插入。从攻击者的角度来看,目标是设计一个可以逃避光学逆向工程的最小占用空间 HT,以及在罕见条件下激活并隐藏在工艺变化范围内的隐身 HT,从而逃避通过传统制造测试检测。 HT 设计由两部分组成,即触发器和有效载荷机制。可能的 HT 种类繁多,从简单到非常复杂的攻击模式不等。最简单的 HT 是组合电路,用于监控一组节点,在罕见节点条件同时发生时生成触发器,随后,一旦触发器被激活,有效载荷就会翻转另一个节点的值。更复杂的 HT 包括硅磨损机制 [3]、隐藏侧通道 [4]、改变晶体管有源区域中的掺杂剂极性 [5]、从受害线路中抽取电荷 [6] 等。从防御者的角度来看,根据插入 HT 的阶段,有几种途径可以提供针对 HT 的弹性。对策可以分为硅前和硅后 HT 检测和信任设计 (DfTr) 技术。硅前 HT 检测技术包括功能验证和形式验证。硅片后 HT 检测技术包括光学逆向工程、旨在通过应用测试向量来揭示 HT 的功能测试,以及旨在通过 HT 对参数测量(即延迟、功率、温度等)的影响来揭示 HT 的统计指纹识别。DfTr 技术包括
印度尼西亚政府已经开始改革数字广播,通过同步广播系统促进从模拟广播到数字广播的过渡。全面实施这些技术变革有可能产生最佳的数字广播生态系统。这种同步广播系统的显着特点是它能够同时传输模拟和数字频率。尽管它具有相当大的实际意义,但是对于为什么必须实施模拟和数字广播同步广播系统以跟上数字时代广播技术的发展步伐,人们缺乏系统的知识。这项研究通过探索多平台同步广播模型的生态系统因素,为广播的未来做出了贡献。该分析基于对广播行业互联网领域内同步广播系统(模拟和数字)的定性研究。研究确定了几个因素:第一,地面模拟广播;第二,地面数字广播;第三,互联网广播和人力资源;第四,模拟和数字同步广播系统;第四,互联网多元社交媒体平台。
第三步是人为错误识别,人为错误可能发生,从而可能对危险事件产生影响。系统内的人为行为可以分解为认知反应(即未能正确解释信息)或物理行为。系统设计(例如,机组人员的居住环境)会影响人类操作员正确执行任务的概率。因此,评估 PSF(即绩效塑造因素)非常重要,它是任何可能影响人员执行任何任务的能力的因素。外部 PSF 不受个人控制。内部 PSF 是可能受技能、疲劳等影响的人为属性。一旦识别出 PSF,就可以确定它们的影响,以便调整错误率。但是,即使可以调查可能发生人为错误的最可信情况,也不可能列出任务中可能发生的所有可能情况和错误。最后,每种类型的日志记录(例如,因果树记录)都可能有用 [11]。
摘要:环状脂肽(CLP)是具有不同生物学功能的有效次级代谢产物。芽孢杆菌菌株主要产生三个关键家族的CLP,即Iturins,风霉素和表面蛋白,每种都包含结构变体,其特征在于与脂肪酸链相关的环状肽。尽管对CLP进行了广泛的研究,但这些类似物的个别作用及其在驱动生物学活动中的比例仍在很大程度上被忽略了。在这项研究中,我们从velezensis umaf6639中纯化和化学表征了CLP变体,并对它们单独测试了它们的抗真菌和植物生长促进作用。我们分离了5个含有ITURIN A类似物的分数(从C 13到C 17),5个甲壳霉素级分(包含C 16,C 17和C 18风霉素A和C 18风霉素A和C 14,C 15,C 16,C 16和C 17 fengecin B)和5个表面菌馏分(从C 12到C 16)。我们表明,基于每种脂肪肽变体计算的生理比率,抗真菌活性和种子梯形生长促进如何依赖脂蛋白结构变体和浓度。值得注意的是,我们发现最有毒的变体是最少的,它们可能在保留生物活性的同时最小化自毒性。通过与更丰富,更积极的类似物的协同互动来实现这种平衡。此外,某些风水和表面素的变体被证明可以增加细菌种群密度和外多糖产生,对微生物竞争的关键策略,具有重大的生态影响。■简介除了促进基本知识外,我们的发现还将支持精确生物技术创新的发展,提供有针对性的解决方案来推动可持续的粮食生产和保存策略。关键词:环状脂肪肽,结构变体,类似物,芽孢杆菌,抗真菌,抗真菌,植物生长促进,生物技术,可持续农业,食品控制。
量子机器学习有可能为人工智能提供强大的算法。在量子机器学习中追求量子优势是一个活跃的研究领域。对于目前有噪声的中型量子计算机,已经提出了各种量子-经典混合算法。一种先前提出的混合算法是基于门的变分嵌入分类器,它由经典神经网络和参数化的基于门的量子电路组成。我们提出了一种基于模拟量子计算机的量子变分嵌入分类器,其中控制信号随时间连续变化:我们特别关注的是使用量子退火器的实现。在我们的算法中,通过线性变换将经典数据转换为模拟量子计算机的时变哈密顿量的参数。非线性分类问题所需的非线性纯粹由模拟量子计算机通过最终量子态对哈密顿量控制参数的非线性依赖性提供。我们进行了数值模拟,证明了我们的算法对线性不可分数据集(例如同心圆和 MNIST 数字)进行二分类和多类分类的有效性。我们的分类器可以达到与最佳经典分类器相当的准确度。我们发现,通过增加量子比特的数量可以提高分类器的性能,直到性能饱和并波动。此外,我们的分类器的优化参数数量与量子比特的数量成线性关系。因此,当我们的模型大小增加时,训练参数数量的增加速度不如神经网络快。我们的算法提出了使用当前量子退火器解决实际机器学习问题的可能性,并且它还可用于探索量子机器学习中的量子优势。
α-羟基酸(AHA),溶解在水中并且具有还原性和酸性品质等二醇酸(C₂H₄O₃)。它包含一个羧基(-COOH),该羧基可以与醇通过酯化酸化乙酸酯的反应。其中等酸度使IT导致基于分离的溶液,产生氢离子(H⁺),并有助于护肤产品的脱角质质量。另外,乙醇酸可以通过与碱中和反应进行中和反应来产生盐等盐。由于其反应性,它可以用作化学剥离剂和无效组成。它还具有降低的品质,可以影响不同种类的反应中其他有机分子。
1 1 ,KTH皇家技术学院,KTH皇家技术研究所,Albanova大学中心,SE-10691斯德哥尔摩,斯德哥尔摩,瑞典2号瑞普萨拉大学物理与天文学系,乌普萨拉大学,Box 516,SE-751,SE-751,SE-751 20 UPPSALA,SE-751 20 UPPSALA,SEWEN 3,SWEDEN 3 SWEDEN 4 PRYSIC和ELECTRICAL ELECTRICAR ENTICER ERMENER ERMENER ERMENER ERMERERING,SE-KALER UNICASION,SE-SE-392瑞典电子科学研究中心(SERC),KTH皇家技术学院,SE-10044斯德哥尔摩,瑞典5 Wallenberg 5 Wallenberg倡议可持续性材料科学科学(WISE),KTH皇家技术研究所,SE-10044 Stockholm,STECHOLM,SWEDEN 6 SWEDEN,SWEDEN 6,SWEDEN 6,科学与技术学院,SECRO,SE-REBRO UNICOCT,SE-701 82,SWIRIAT,SWIRIAT,SWIRIAT,SWIRIAIT,SWIRIAIT,sWIRIAIT,WISER,沃尔布罗,沃尔布罗,沃尔布罗。科学,乌普萨拉大学,框516,SE-751 20乌普萨拉,瑞典8应用数学和计算机科学系,数学和统计学院,1 ,KTH皇家技术学院,KTH皇家技术研究所,Albanova大学中心,SE-10691斯德哥尔摩,斯德哥尔摩,瑞典2号瑞普萨拉大学物理与天文学系,乌普萨拉大学,Box 516,SE-751,SE-751,SE-751 20 UPPSALA,SE-751 20 UPPSALA,SEWEN 3,SWEDEN 3 SWEDEN 4 PRYSIC和ELECTRICAL ELECTRICAR ENTICER ERMENER ERMENER ERMENER ERMERERING,SE-KALER UNICASION,SE-SE-392瑞典电子科学研究中心(SERC),KTH皇家技术学院,SE-10044斯德哥尔摩,瑞典5 Wallenberg 5 Wallenberg倡议可持续性材料科学科学(WISE),KTH皇家技术研究所,SE-10044 Stockholm,STECHOLM,SWEDEN 6 SWEDEN,SWEDEN 6,SWEDEN 6,科学与技术学院,SECRO,SE-REBRO UNICOCT,SE-701 82,SWIRIAT,SWIRIAT,SWIRIAT,SWIRIAIT,SWIRIAIT,sWIRIAIT,WISER,沃尔布罗,沃尔布罗,沃尔布罗。科学,乌普萨拉大学,框516,SE-751 20乌普萨拉,瑞典8应用数学和计算机科学系,数学和统计学院,,KTH皇家技术学院,KTH皇家技术研究所,Albanova大学中心,SE-10691斯德哥尔摩,斯德哥尔摩,瑞典2号瑞普萨拉大学物理与天文学系,乌普萨拉大学,Box 516,SE-751,SE-751,SE-751 20 UPPSALA,SE-751 20 UPPSALA,SEWEN 3,SWEDEN 3 SWEDEN 4 PRYSIC和ELECTRICAL ELECTRICAR ENTICER ERMENER ERMENER ERMENER ERMERERING,SE-KALER UNICASION,SE-SE-392瑞典电子科学研究中心(SERC),KTH皇家技术学院,SE-10044斯德哥尔摩,瑞典5 Wallenberg 5 Wallenberg倡议可持续性材料科学科学(WISE),KTH皇家技术研究所,SE-10044 Stockholm,STECHOLM,SWEDEN 6 SWEDEN,SWEDEN 6,SWEDEN 6,科学与技术学院,SECRO,SE-REBRO UNICOCT,SE-701 82,SWIRIAT,SWIRIAT,SWIRIAT,SWIRIAIT,SWIRIAIT,sWIRIAIT,WISER,沃尔布罗,沃尔布罗,沃尔布罗。科学,乌普萨拉大学,框516,SE-751 20乌普萨拉,瑞典8应用数学和计算机科学系,数学和统计学院,,KTH皇家技术学院,KTH皇家技术研究所,Albanova大学中心,SE-10691斯德哥尔摩,斯德哥尔摩,瑞典2号瑞普萨拉大学物理与天文学系,乌普萨拉大学,Box 516,SE-751,SE-751,SE-751 20 UPPSALA,SE-751 20 UPPSALA,SEWEN 3,SWEDEN 3 SWEDEN 4 PRYSIC和ELECTRICAL ELECTRICAR ENTICER ERMENER ERMENER ERMENER ERMERERING,SE-KALER UNICASION,SE-SE-392瑞典电子科学研究中心(SERC),KTH皇家技术学院,SE-10044斯德哥尔摩,瑞典5 Wallenberg 5 Wallenberg倡议可持续性材料科学科学(WISE),KTH皇家技术研究所,SE-10044 Stockholm,STECHOLM,SWEDEN 6 SWEDEN,SWEDEN 6,SWEDEN 6,科学与技术学院,SECRO,SE-REBRO UNICOCT,SE-701 82,SWIRIAT,SWIRIAT,SWIRIAT,SWIRIAIT,SWIRIAIT,sWIRIAIT,WISER,沃尔布罗,沃尔布罗,沃尔布罗。科学,乌普萨拉大学,框516,SE-751 20乌普萨拉,瑞典8应用数学和计算机科学系,数学和统计学院,,KTH皇家技术学院,KTH皇家技术研究所,Albanova大学中心,SE-10691斯德哥尔摩,斯德哥尔摩,瑞典2号瑞普萨拉大学物理与天文学系,乌普萨拉大学,Box 516,SE-751,SE-751,SE-751 20 UPPSALA,SE-751 20 UPPSALA,SEWEN 3,SWEDEN 3 SWEDEN 4 PRYSIC和ELECTRICAL ELECTRICAR ENTICER ERMENER ERMENER ERMENER ERMERERING,SE-KALER UNICASION,SE-SE-392瑞典电子科学研究中心(SERC),KTH皇家技术学院,SE-10044斯德哥尔摩,瑞典5 Wallenberg 5 Wallenberg倡议可持续性材料科学科学(WISE),KTH皇家技术研究所,SE-10044 Stockholm,STECHOLM,SWEDEN 6 SWEDEN,SWEDEN 6,SWEDEN 6,科学与技术学院,SECRO,SE-REBRO UNICOCT,SE-701 82,SWIRIAT,SWIRIAT,SWIRIAT,SWIRIAIT,SWIRIAIT,sWIRIAIT,WISER,沃尔布罗,沃尔布罗,沃尔布罗。科学,乌普萨拉大学,框516,SE-751 20乌普萨拉,瑞典8应用数学和计算机科学系,数学和统计学院,,KTH皇家技术学院,KTH皇家技术研究所,Albanova大学中心,SE-10691斯德哥尔摩,斯德哥尔摩,瑞典2号瑞普萨拉大学物理与天文学系,乌普萨拉大学,Box 516,SE-751,SE-751,SE-751 20 UPPSALA,SE-751 20 UPPSALA,SEWEN 3,SWEDEN 3 SWEDEN 4 PRYSIC和ELECTRICAL ELECTRICAR ENTICER ERMENER ERMENER ERMENER ERMERERING,SE-KALER UNICASION,SE-SE-392瑞典电子科学研究中心(SERC),KTH皇家技术学院,SE-10044斯德哥尔摩,瑞典5 Wallenberg 5 Wallenberg倡议可持续性材料科学科学(WISE),KTH皇家技术研究所,SE-10044 Stockholm,STECHOLM,SWEDEN 6 SWEDEN,SWEDEN 6,SWEDEN 6,科学与技术学院,SECRO,SE-REBRO UNICOCT,SE-701 82,SWIRIAT,SWIRIAT,SWIRIAT,SWIRIAIT,SWIRIAIT,sWIRIAIT,WISER,沃尔布罗,沃尔布罗,沃尔布罗。科学,乌普萨拉大学,框516,SE-751 20乌普萨拉,瑞典8应用数学和计算机科学系,数学和统计学院,
一个多世纪前胰岛素的发现仍然是 20 世纪最重要的医学进步之一。1921 年班廷和贝斯特发现胰岛素后不久,牛胰岛素和猪胰岛素的生产就开始了。虽然早期的胰岛素制剂含有大量污染物,但制造工艺的进步大大提高了它们的安全性,从而开发出更安全的牛胰岛素和猪胰岛素制剂。第一次成功的胰岛素治疗是在 1922 年 1 月 11 日进行的,使用了一种被称为“麦克劳德血清”的胰岛素提取物 [3] 。20 世纪 30 年代,丹麦化学家 HC Hagedorn 在胰岛素中添加了鱼精蛋白,后来,多伦多的 Scott 和 Fisher 添加了锌以进一步延长胰岛素的作用。鱼精蛋白锌胰岛素的持续时间为 24-36 小时。鱼精蛋白或中性鱼精蛋白 Hagedorn (NPH) 胰岛素是首批长效胰岛素之一,半衰期为 24 小时。礼来公司于 1936 年开始大批量生产胰岛素。胰岛素是 1955 年利用人类重组 DNA 技术测序和合成的第一个人类蛋白质。人们还发现了作用较慢的胰岛素,诺和诺德公司是第一个推出这些胰岛素的公司。第一种合成的“人类”胰岛素于 1978 年生产出来,它是利用大肠杆菌进行基因改造的。1982 年,第一种市售的合成人类胰岛素以 Humulin 的名称上市 [2,4,5]。
随着技术向前推动和电路发展为复杂且复杂的设计,传统的手动电路设计方法将自己处于十字路口。随着引入许多挑战的尖端流程,从概念到创造的旅程变得越来越艰巨,要求大量的时间投资。为了克服这些挑战,自动化是一种关键创新,在确保精确度的同时加速了产品开发。这项研究通过研究模拟和数字电路发生器的结构并开创一种称为“正确构造”的自动合成方法来探索模拟电路设计。这种创新的方法优化了设计过程,同时从一开始就优先考虑准确性。此外,本研究还评估了模拟发生器的性能,重点是使用AUTOCKT进行准确性和电路指标。诸如自动布局生成的ALIGN和用于数字设计自动化的OpenFASOC等工具进一步提高了模拟电路设计中的效率和可访问性。这些工具的集成以及它们与开源CAD平台的兼容性,还显示出自动化的重大进步。此外,图形用户界面(GUI)的开发提供了一个用户友好的平台,可与与电路设计和仿真相关的各种功能进行交互,从而增强了总体设计工作流程。
dc artring在PV字符串的电缆电缆中引起交流噪声电流,该电缆以多个MHz的范围中存在。太阳能中DC ARC检测的挑战是以可靠的方式检测PV电缆内噪声的增加,而不会引起错误的警报和关闭。要达到这种能力,需要一个低噪声,高性能的模拟前端,因为ARC的注射AC噪声可以坐落在DC String电流顶部的几mA范围内,该电弧的范围内,该电弧的范围在住宅应用中的20A范围内,甚至在商业太阳能应用中甚至更高。此外,太阳系中还有其他几种噪声来源,这些噪声无法错误地解释为弧。这些其他噪声源的示例是PV电缆上逆变器或电源线通信的开关频率。传统上,算法用于识别测得电流中的弧形特征。要实现可靠的弧检测,这些算法通常需要对每个系统进行微调,因为电弧签名高度依赖于系统。