摘要。量子计算挑战锚定公共密码安全性的计算硬度假设,例如素数分解和离散对数问题。为量子时代做准备并承受配备量子计算的攻击,安全性和加密社区正在设计新的抗量子公开密钥密码。国立斯坦德和技术研究所(NIST)正在收集和标准化量子密码,这与其过去参与建立DES和AES作为对称的密码标准类似。公用签名的纳斯特主义算法是二锂,猎鹰和彩虹。找到比较这些算法的共同基础可能很困难,因为它们的设计,基本的计算硬度假设(基于晶格的基于晶格与基于多变量)以及用于先前研究中安全强度分析的不同指标(Qubits vs. Quantum Gates)。我们克服了此类挑战,并比较了Dilithium,Falcon和Rainbow的最终Quantum后密码的安全性和表现。为了进行安全比较分析,我们通过量子电路的深度宽度成本(DW成本)来衡量安全优势,并通过分析通用量子门模型并通过量子退火来提高先前的文献。为了进行性能分析,我们比较算法在执行时间内的计算负载以及与运输层安全性(TLS)和传输控制权协议(TCP)/Internet协议(Internet协议(IP)集成时,通信成本和实施开销。我们的工作介绍了安全比较和绩效分析以及贸易分析,以告知后Quantum Cipher设计和标准化,以保护后Quantum时代的计算和网络。
Zijun Lu 1,2,3 , Xiaotong Guo 1,2,3 , Zhiyu Huang 1,2,3 , Juan Xia 1,2,3 , Xiang Li 1,2,3 , Jinwen Wu 1,2,3 , Hang Yu 1,2,3 , Muhammad Qasim Shahid 1,2,3, * and Xiangdong Liu 1,2,3,4, * 1 State中国南部农业大学的亚热带农业库库保护和利用的主要实验室,中国510642; zjlu@stu.scau.edu.cn(Z.L.); xtguo@stu.scau.edu.cn(X.G.); zyhuang@stu.scau.edu.cn(Z.H.); XJ516025647@163.com(J.X.); xiangli@scau.edu.cn(X.L.); jwwu@scau.edu.cn(J.W.); hyu@stu.scau.edu.cn(H.Y。)2广东植物分子繁殖植物繁殖省主要实验室,南中国农业大学,广州510642,中国3中国农业大学农业学院,中国农业大学,510642,普通中国4号广场,兰格诺现代农业实验室,中国南部农业大学,地址: qasim@scau.edu.cn(M.Q.S. ); xdliu@scau.edu.cn(X.L. );电话。 /传真: + 86-208-528-0205(M.Q.S. < / div> &X.L.)2广东植物分子繁殖植物繁殖省主要实验室,南中国农业大学,广州510642,中国3中国农业大学农业学院,中国农业大学,510642,普通中国4号广场,兰格诺现代农业实验室,中国南部农业大学,地址: qasim@scau.edu.cn(M.Q.S.); xdliu@scau.edu.cn(X.L.);电话。/传真: + 86-208-528-0205(M.Q.S. < / div>&X.L.)
摘要:本文探讨了将光探测和测距 (LiDAR) 点云和地理信息系统 (GIS) 分析应用于土地利用和土地覆盖 (LULC) 变化检测的可能性,主要目的是监测后农业土地上发生的不受控制的森林演替。这项研究是在 Milicz 行政区(波兰中西部地区)的一部分进行的。感兴趣的区域是已经放弃农业用途并且森林演替过程已经进展的地块。机载激光扫描 (ALS) 数据(于 2007 年、2012 年和 2015 年获取)揭示了由于森林演替过程的进展而导致的土地覆盖的详细变化。使用 ALS 数据,显示了 LULC 变化和次生林演替的进展,并给出了植被参数(LiDAR 指标)。
1临床研究所,美国贝鲁特大学,黎巴嫩贝鲁特; 2英国赫尔赫尔大学赫尔约克医学院的沃尔夫森姑息治疗研究中心; 3加拿大汉密尔顿麦克马斯特大学卫生研究方法,证据和影响力; 4药学科学研究生课程,索罗卡巴大学,UNISO,索罗卡巴,圣保罗,巴西; 5加拿大安大略省多伦多大学多伦多大学医学系; 6中国循证医学中心医学中心医院,四川大学,成都,中华民国; 7美国密苏里州堪萨斯城,美国密苏里州城市的医学和生物医学和健康信息学系; 8加拿大安大略省多伦多的Sunnybrook Health Sciences Center评估临床科学系; 9流行病学系,哈佛T.H.Chan公共卫生学院,美国马萨诸塞州波士顿;加拿大汉密尔顿的麦克马斯特大学麻醉科10; 11加拿大汉密尔顿麦克马斯特大学迈克尔·G·德鲁特国家疼痛中心;加拿大汉密尔顿的加拿大退伍军人12慢性疼痛中心; 13荷兰乌得勒支大学乌得勒支大学医学中心朱利叶斯健康科学与初级保健中心; 14加拿大汉密尔顿麦克马斯特大学医学系Chan公共卫生学院,美国马萨诸塞州波士顿;加拿大汉密尔顿的麦克马斯特大学麻醉科10; 11加拿大汉密尔顿麦克马斯特大学迈克尔·G·德鲁特国家疼痛中心;加拿大汉密尔顿的加拿大退伍军人12慢性疼痛中心; 13荷兰乌得勒支大学乌得勒支大学医学中心朱利叶斯健康科学与初级保健中心; 14加拿大汉密尔顿麦克马斯特大学医学系
序言 本文件是 EPA 辐射和室内空气办公室 (ORIA) 的几项举措之一,旨在为放射分析实验室提供指导,以支持 EPA 在放射性或核事故后的响应和恢复行动。本指南研究了在正常运行期间和放射性事故后通过伽马射线光谱法对样品的分析。本文件提供的样品筛选和分析指南应有助于那些在应对放射性或核事故时面临大量此类样品挑战的联邦、州和商业放射分析实验室。本文件适用于不同类型的事件:放射性运输事故、放射性散布装置 (RDD 或“脏弹”)、核电站紧急状态的泄漏、简易核装置 (IND) 的爆炸、其他潜在的放射性泄漏以及正常的实验室操作。这些样品将被不同程度的放射性核素污染,并代表不同成分的基质。国家和地区响应小组以及放射实验室的提前规划对于确保不间断地处理大量放射性样品以及快速周转和报告符合与保护人类健康和环境相关的数据质量目标的结果至关重要。正如《国家响应框架》和《核/放射事件附件》中所述,EPA 的职责包括响应和恢复行动,以检测和识别放射性物质以及协调联邦放射监测和评估活动。关于推荐的放射分析实践的详细指导可以在《多机构放射实验室分析协议手册》(MARLAP)中找到,该手册根据项目特定要求为项目规划人员、管理人员和放射分析人员提供详细的放射分析指导(www.epa.gov/radiation/marlap/links.html)。熟悉 MARLAP 的第 2、3、14、15 和 18-20 章将对本指南的用户大有裨益。本文件是一系列文件之一,旨在向放射分析实验室人员、事故指挥官(及其指定人员)和其他现场响应人员介绍实验室关键操作注意事项和可能的放射分析要求、决策路径以及放射或核事故后采集的样本分析的默认数据质量和测量质量目标。目前完成的文件包括: 全国性重大事故放射实验室样本分析指南 - 水中放射性核素(EPA 402-R-07-007,2008 年 1 月) 全国性重大事故放射实验室样本分析指南 - 空气中的放射性核素(EPA 402-R-09-007, 国家重大事件放射实验室样品筛选分析指南 (EPA 402-R-09-008,2009 年 6 月) 参与事件响应活动的放射实验室所使用的资格方法的方法验证指南 (EPA 402-R-09-006,2009 年 6 月) 实验室指南 – 放射或核事件响应核心操作的识别、准备和实施 (EPA 402-R-10-002,2010 年 6 月)
Tekin SUSAM 摘要:无人机 (UAV) 可以为探索考古遗址的建筑提供非常有用的图像数据集。数字表面模型 (DSM) 是一种可以使用摄影测量材料和方法从无人机图像中获取的数据集。本研究的目的首先是获得非常高分辨率的 DSM,其次,对塞巴斯托波利斯考古遗址进行基于地理信息系统 (GIS) 的地形分析。塞巴斯托波利斯古城位于土耳其黑海地区托卡特省的苏卢萨赖区;该遗址属于希腊化/罗马时期。这项研究表明,多旋翼无人机特别适用于需要在考古遗址上空非常低空飞行的应用,并且以这种方式获取的 DSM 对于详细分析考古遗址的地形结构非常有效。关键词:GIS;非常高分辨率 DSM;无人机 1 简介 记录和分析考古遗址及其环境极其重要 [1, 2]。通过使用空中或非空中视角,考古研究中可以实施许多方法。卫星和其他基于空中的数字高程数据集为考古学家提供了非常有价值的信息平台,可用于分析考古区域 [3-6]。这些数据集使研究人员有机会以比众所周知的测量更高的精度对地形表面进行建模
该项目由医疗保健研究和质量局资助,资助编号为 R03HS016774。内容完全由作者负责,并不一定代表医疗保健研究和质量局的官方观点。
Type 1, MODY1 (HNF4 gene analysis) Type 2, MODY2 (GCK gene analysis) Type 3, MODY3 (HNF1 gene analysis) Type 4, MODY4 (PDX1 gene analysis) Type 5, MODY5 (HNF1 gene analysis) Type 6, MODY6 (NEUROD1 gene analysis) Type 7, MODY7 (KLF11 gene analysis) Type 8, Mody8(CEL基因分析)9型,Mody9(PAX4基因分析)多分泌肿瘤
健康影响研究所成立于 1980 年,是一家独立、公正的机动车排放对健康影响信息来源。健康影响研究所支持所有主要污染物的研究,包括受管制污染物(如一氧化碳、臭氧、二氧化氮和颗粒物)和不受管制污染物(如柴油发动机尾气、甲醇和醛类)。迄今为止,健康影响研究所已支持北美和欧洲机构的 220 多个项目,并发表了 140 多份研究报告。为了履行其作为机动车污染物对健康影响的独立信息来源的使命,该研究所还参与了特别审查和评估活动。通常,健康影响研究所的资金有一半来自美国环境保护署,另一半来自美国 28 家机动车和发动机制造商和营销商。有时,其他公共和私人组织的资金要么支持特殊项目,要么为健康影响研究所的研究提供部分资源。无论资金来源如何,健康影响研究所在确定研究重点和得出结论方面都拥有完全的自主权。独立董事会负责管理 HEI。研究所的健康研究和审查委员会服务于互补的科学目的,并吸纳杰出的科学家作为成员。HEI 资助的研究和评估结果已用于公共和私人决策。
健康影响研究所成立于 1980 年,是有关机动车排放对健康影响的独立、公正的信息来源。健康影响研究所支持所有主要污染物的研究,包括受管制污染物(如一氧化碳、臭氧、二氧化氮和颗粒物)和不受管制污染物(如柴油发动机尾气、甲醇和醛类)。迄今为止,健康影响研究所已支持北美和欧洲机构的 220 多个项目,并发表了 140 多份研究报告。研究所的使命是作为有关机动车污染物对健康影响的独立信息来源,研究所还参与特别审查和评估活动。通常,健康影响研究所的一半资金来自美国环境保护署,另一半来自美国 28 家机动车和发动机制造商和营销商。有时,来自其他公共和私人组织的资金会支持特殊项目或为 HEI 研究提供部分资源。无论资金来源如何,HEI 在确定其研究重点和得出结论时都拥有完全的自主权。独立董事会管理 HEI。该研究所的健康研究和审查委员会服务于互补的科学目的,并吸收杰出的科学家作为成员。HEI 资助的研究和评估结果已用于公共和私人决策。