凹口是根据特殊工艺监控要求定制设计的,适用于工艺室配置和工艺压力,用于监控溅射、CVD、ALD、MOCVD、PECVD、PVD、蒸发和光学涂层中的气体成分和污染物。
Eugenio Petrovich的分析哲学的定量肖像是一种令人愉悦且精心制作的补充,是这种互补工作的例子。两个功能使该项目特别有价值。首先,此类数字研究几乎总是以期刊文章的形式发表,这意味着使用多种不同方法研究同一目标域的持续分析相对较少。petrovich仔细地划定了一个研究领域,他称之为晚期分析哲学(LAP),其中包括五个顶级分析哲学期刊(哲学,哲学,哲学,哲学和现象学研究,思想和思想研究,思想和哲学评论)的所有期刊文章的集合,在1980年至2000年之间发表。(偶尔出于技术原因,目标是最近的分析哲学[RAP],它涵盖了相同的期刊,但从2005年到2019年。)这些文章的位置非常好,可以为我们全面地了解该领域的演变,这是在这个迅速移动的二十年中。
机器学习、深度学习、人工智能 (AI)、大型语言模型和生成式人工智能的快速发展加速了利用这些技术获取军事优势的努力。我们将这些技术及相关技术称为分析技术。我们提出了一个框架作为实现“分析优势”的指南,分析优势是通过收集分析所需数据的能力获得的作战优势;构建有用、高效和强大的分析模型;并在作战系统中部署分析模型以实现目标,同时利用或阻止对手执行相同操作的能力。分析优势最好在对手的分析能力的背景下理解,对手也会收集数据、构建模型并部署它们以实现自己的目标并击败对手的分析。该框架强调制定分析策略、收集所需数据、开发用于管理和分析数据的分析基础设施、构建分析模型以及将分析部署到作战系统中以实现分析策略所需的目标。尽管分析竞争并非新鲜事物,但它是军事和战略竞争中一个被低估的方面,而且其发展速度比以往任何技术竞争都要快。我们讨论了美国网络空间优势(这是物理领域军事优势的基础)现在如何取决于在与对手的分析竞争中获胜,因此需要采用战略和流程来实现分析优势。
▶无需采用弦理论/滚动假设:我们研究一般领域理论并获得与模型无关的约束;然后,我们评估这种约束意味着弦乐压实▶我们寻找原理证明(半)永恒的宇宙加速度在弦线中可能是可能的。我们不会试图与观察接触
本研究的主要目的是调查经典相空间的凯勒几何如何影响从几何量化获得的量子希尔伯特空间的量子信息方面,反之亦然。我们以一种特殊的方式用量子线束将状态与两个积分凯勒流形乘积的子集关联起来。我们证明了当子集是乘积的有限并集时,以这种方式关联的状态是可分离的。我们给出了希尔伯特空间 H 0 ( M 1 , L ⊗ N 1 ) ⊗ H 0 ( M 2 , L ⊗ N 2 ) 上所有纯态平均熵的渐近结果,其中 H 0 ( M j , L ⊗ N j ) 是紧致复流形 M j 上厄米充足线束 L j 的 N 次张量幂的全纯截面空间。这个渐近表达式的系数捕捉了流形的某些拓扑和几何性质。在另一个与量子计算相关的项目中,我们为群 U 3 n ( Z [ 1
量子系统的性质可以使用经典阴影来估计,经典阴影基于单元的随机集合实现测量。最初是为全局 Clifford 单元和单量子比特 Clifford 门的乘积而推导的,实际实现仅限于中等数量量子比特的后一种方案。除了局部门之外,使用两个局部门的非常短的随机电路的精确实现在实验上仍然是可行的,因此对于在近期应用中实现测量很有意思。在这项工作中,我们推导出使用带有两层并行双局部 Haar 随机(或 Clifford)单元的砖砌电路的阴影估计的闭式解析表达式。除了构建经典阴影之外,我们的结果还为估计 Pauli 可观测量提供了样本复杂度保证。然后,我们将使用砖砌电路的阴影估计性能与使用局部 Clifford 单元的既定方法进行比较,发现在足够多的量子比特上支持的可观测量估计中样本复杂度有所提高。
气候变化综合评估模型 (IAM) 分析经济生产、温室气体 (GHG) 排放和全球变暖之间的长期相互作用。由于其复杂性,IAM 通常被局外人视为“黑匣子”。本文在一般分析框架中分析了二氧化碳排放的驱动因素、它们对碳税的反应以及它们对技术进步和能源供应替代性的依赖。气候变化综合评估的分析方法至少可以追溯到 Heal (1984) 富有洞察力的非定量贡献。多篇论文使用线性二次模型对气候政策进行定量分析讨论(Hoel & Karp 2002、Newell & Pizer 2003、Karp & Zhang 2006、Karp & Zhang 2012、Valentini & Vitale 2019、Karydas & Xepapadeas 2019、Karp & Traeger 2021)。这些线性二次方法的缺点是它们对经济和气候系统的描述过于程式化。特别是,这些模型没有生产或能源部门。Golosov 等人 (2014) 开辟了新局面,通过修改 Brock & Mirman (1972) 随机增长模型的对数效用和完全折旧版本,加入了能源部门和生产对排放的脉冲响应。 Golosov 等人 (2014) 的框架引发了关于分析综合评估模型 (AIAM) 的文献越来越多,包括应用于多区域环境 (Hassler & Krusell 2012、Hassler 等人 2018、Hambel 等人 2018)、非常量贴现 (Gerlagh & Liski 2018 b、Iverson & Karp 2020)、代际博弈 (Karp 2017) 和政权更迭 (Gerlagh & Liski 2018 a)。Traeger (2021) 将分析 IAM 与完全复杂性气候系统相结合,并概括了经济生产的表示,Traeger (2018) 将不确定性纳入框架。1
摘要 . 磁等离子体动力 (MPD) 推进器能够使用兆瓦 (MW) 的电力将准中性等离子体加速到高排气速度。这些特性使得此类设备值得考虑用于要求苛刻的长期任务,例如人类对火星或更远距离的探索。由于 MPD 推进器是正在进行的实验研究课题,而不是已开发的推进器,因此在系统和任务级别对其进行评估通常很困难。但是,为了评估 MPD 推进器在后续任务中的效用,需要对性能进行一些充分的表征,或者更确切地说,需要对性能进行预测,并定义系统级别以供分析使用。已经对自场 MPD 推进器的最新物理模型进行了检查、评估和重新配置,以供系统和任务分析师使用。物理模型允许根据可在实验室中测量的物理参数合理预测推进器性能。本文介绍了这些模型及其对未来 MPD 推进器设计的影响。
我们描述了一名70岁妇女的情况,该妇女发展出跨层皮质,V1和相关视觉关联皮层的脑梗塞。她出现了对物体的重复图像,较低的保真度和原始(Polyopia)的透明副本的视觉感知障碍,与全息图非常相似。我们抓住了这个机会来解释这些虚假图像的产生。这使我们得出了不少于壮观的自动脑理论,该理论解释了大脑的高度熵,大脑皮层中数据的存储,大脑组织的等电位性以及大脑计算算法和感知感觉的能力。人脑的这种显着能力需要在大脑皮层的高度相互连接和密集的树突树中的数学傅立叶变换和电势势的部署。这里探索的想法是崇高的。这些阴谋被认为是在自然界深深地根深蒂固的。不少于黑洞和宇宙本身。我们的案例以图形和生动的方式为大脑功能的全息模型提供了证据。