S. Bidalai Muthu教授:Sri Subramania Bharamath泰米尔语语言与文学学院(I/C) (I/C)D。Sultanana教授:人文学院G. Chandhrika教授:社会科学与国际研究学院S. Svasathya教授:工程与技术学院:E。Srekala教授:PANKAJ KUNDRA教授:P. Sridharan:P. Sridharan:S. S. victor Ands Ands Anns And S. S. S. S. S. S. (I/C)R。Sevukan教授:媒体与传播学院B. Mohammed Jaffar Ali:Madanjeet绿色能源技术学院(I/C)
[ 5 ] Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao Lin, Zhao Xu, Keqiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu, Yucheng Wang, Haiyang Yu, YuQing Xie, Xiang Fu, Alex Strasser, Shenglong Xu , Yi Liu, Yuanqi Du, Alexandra Saxton, Hongyi Ling, Hannah Lawrence, Hannes Stärk, Shurui Gui, Carl Edwards, Nicholas Gao, Adriana Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani, Rui Wang, Ameya Daigavane, Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung, Minkai Xu, Chaitanya K. Joshi, Simon V. Mathis, Kamyar Azizzadenesheli, Ada Fang, Alán Aspuru-Guzik, Erik Bekkers, Michael Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano Ermon,PietroLiò,Rose Yu,StephanGünnemann,Jure Leskovec,Heng JI,Jimeng Sun,Regina Barzilay,Tommi Jaakkola,Connor W. Coley,Coley,Coley,Xiaoning Qian,Xiaofeng Qian,Xiaofeng Qian,Tess Smidt和Shuiiwang Ji。“量子,原子和连续体系中科学的人工智能”。Arxiv预印型ARXIV:2307。08423(2023)。
1。J. Ma,H。Pei,L。Lausen和G. Karypis, 2。 J. Jabbour,V。V。V. Berghe,J。Runevic,M。Stewart,J。C。Krishnan,V。V。V. V. Huang,I。Faust,Faust,Faust,Faust,Faust, V. J. Reddi,A2Perf:现实世界2025, 3。 St. Cheng,J。Yik,R。Ghosal,I。 J. Reddi,“采石场:计算特征代理的崇拜日期”,IEEE计算机Letters Architect,2025。ARX:2501,01892,杂志。 4。 J. MA,A。 5。 J. My,A。Letcher,F.Schäfer,Y。 2021。Arxiv:2111,08565,完整纸。J. Ma,H。Pei,L。Lausen和G. Karypis,2。J. Jabbour,V。V。V. Berghe,J。Runevic,M。Stewart,J。C。Krishnan,V。V。V. V. Huang,I。Faust,Faust,Faust,Faust,Faust, V. J. Reddi,A2Perf:现实世界2025,3。St. Cheng,J。Yik,R。Ghosal,I。 J. Reddi,“采石场:计算特征代理的崇拜日期”,IEEE计算机Letters Architect,2025。ARX:2501,01892,杂志。4。J. MA,A。 5。 J. My,A。Letcher,F.Schäfer,Y。 2021。Arxiv:2111,08565,完整纸。J. MA,A。5。J. My,A。Letcher,F.Schäfer,Y。 2021。Arxiv:2111,08565,完整纸。J. My,A。Letcher,F.Schäfer,Y。 2021。Arxiv:2111,08565,完整纸。
1。Guatteri,M.,Mai,P.M。,&Beroza,G。C.(2004)。 用于强型地面运动预测的动态破裂模型的伪纳米近似。 美国地震学会的公告,94(6),2051- 2063年。 2。 Graves,R。W.和Pitarka,A。 (2010)。 使用混合方法宽带地面运动模拟。 美国地震学会的公告,100(5a),2095– 2123。 3。 Graves,R。和Pitarka,A。 (2016)。 在粗大断层上进行的运动地面运动模拟,包括3D随机速度扰动的影响。 美国地震学会的公告。 4。 Song,S.-G.,Dalguer,L。A.,&Mai,P.M。(2013)。 具有1分和2分统计的地震源参数的伪动态源建模。 Geophysical Journal International,196(3),1770– 1786年。 5。 Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。 伪动力地面动作模拟中的故障粗糙度。 纯净和应用的地球物理Pageoph,174(9),3419–3450。 6。 Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。 参数偏微分方程的傅立叶神经操作员,2020。 7。 Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Guatteri,M.,Mai,P.M。,&Beroza,G。C.(2004)。用于强型地面运动预测的动态破裂模型的伪纳米近似。美国地震学会的公告,94(6),2051- 2063年。2。Graves,R。W.和Pitarka,A。(2010)。使用混合方法宽带地面运动模拟。美国地震学会的公告,100(5a),2095– 2123。3。Graves,R。和Pitarka,A。(2016)。在粗大断层上进行的运动地面运动模拟,包括3D随机速度扰动的影响。美国地震学会的公告。4。Song,S.-G.,Dalguer,L。A.,&Mai,P.M。(2013)。具有1分和2分统计的地震源参数的伪动态源建模。Geophysical Journal International,196(3),1770– 1786年。5。Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。 伪动力地面动作模拟中的故障粗糙度。 纯净和应用的地球物理Pageoph,174(9),3419–3450。 6。 Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。 参数偏微分方程的傅立叶神经操作员,2020。 7。 Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。伪动力地面动作模拟中的故障粗糙度。纯净和应用的地球物理Pageoph,174(9),3419–3450。6。Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。参数偏微分方程的傅立叶神经操作员,2020。7。Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Andrews,D。J.(2005)。破裂动力学,能量损失在滑动区域之外。地球物理研究杂志,110,B01307。8。9。10。Tinti,E.,Fukuyama,E.,Piatanesi,A。,&Cocco,M。(2005)。 运动源时间函数与地震动力学兼容。 美国地震学会的公告,95,1211–1223。 Mai,P。M.和Beroza,G。C.(2002)。 一个空间随机场模型,以表征地震滑移中的复杂性。 地球物理研究杂志,107(B11),2308。 Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Tinti,E.,Fukuyama,E.,Piatanesi,A。,&Cocco,M。(2005)。运动源时间函数与地震动力学兼容。美国地震学会的公告,95,1211–1223。Mai,P。M.和Beroza,G。C.(2002)。 一个空间随机场模型,以表征地震滑移中的复杂性。 地球物理研究杂志,107(B11),2308。 Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Mai,P。M.和Beroza,G。C.(2002)。一个空间随机场模型,以表征地震滑移中的复杂性。地球物理研究杂志,107(B11),2308。Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。美国地震学会公告200; 95(3):965–980。
日内瓦和班加罗尔,2024 年 6 月 11 日——全球抗生素研究与开发伙伴关系 (GARDP) 和 Bugworks Research Inc. (Bugworks) 今天宣布了一项合作协议,共同开发一种具有广谱抗生素活性的创新化合物 (BWC0977),用于对抗导致危及生命的感染的多重耐药细菌。根据协议,GARDP 将向 Bugworks 提供高达 2000 万美元的技术和资金支持,用于 BWC0977 的药物和临床联合开发。作为回报,Bugworks 授予 GARDP 在 146 个国家/地区制造和商业化 BWC0977 的权利,这些国家几乎都是中低收入 (LMIC)。BWC0977 具有体外活性,可对抗导致严重医院内感染(如肺炎、血流感染和复杂性尿路感染)的多种病原体。这些病原体包括世卫组织的关键优先病原体、耐碳青霉烯类的鲍曼不动杆菌和肺炎克雷伯菌,这些病原体目前几乎没有治疗选择。根据 GRAM 的研究,仅这两种病原体就占了 2019 年抗生素耐药性 (AMR) 相关死亡人数的五分之一以上。研究还显示,在全球许多国家,超过 80% 的鲍曼不动杆菌临床分离株对卡巴培南类抗生素具有耐药性。GARDP 执行董事 Manica Balasegaram 表示:“我们很高兴与 Bugworks 合作,在化合物 BWC0977 开发的关键阶段进行重点投资。抗生素管线中的许多化合物缺乏创新特性,未能针对优先病原体。相比之下,BWC0977 因其新颖性和满足未满足的公共卫生需求的潜力而脱颖而出。” Bugworks 联合创始人兼首席执行官 Anand Anandkumar 表示:“Bugworks 很高兴与 GARDP 合作,通过临床开发推进化合物 BWC0977 的研发,以治疗各种耐药性细菌感染。此次合作的首要目标是让西方国家和 AMR 负担较重的中低收入国家同时获得这种化合物。我们感谢 CARB-X 对 BWC0977 的持续支持,从先导化合物优化到人体临床试验,从而使该资产能够进入 GARDP 合作轨道。” BWC0977 的开发反映了全球卫生生态系统为应对 AMR 危机而加强的决心。Bugworks 成立于 2014 年,在印度班加罗尔的细胞和分子平台中心 (C-CAMP) 孵化。自 2017 年以来,
[1] Xiaojun Bi、Barton A. Smith 和 Shumin Zhai。2010 年。准 Qwerty 软键盘优化。在 SIGCHI 计算机系统人为因素会议论文集(美国佐治亚州亚特兰大)(CHI '10)。美国计算机协会,纽约,纽约州,美国,283–286 页。https://doi.org/10.1145/1753326.1753367 [2] Stephane Champely、Claus Ekstrom、Peter Dalgaard、Jeffrey Gill、Stephan Weibelzahl、Aditya Anandkumar、Clay Ford、Robert Volcic、Helios De Rosario 和维护者 Helios De Rosario。[nd]。软件包“pwr”。([nd])。[3] Mike WL Cheung。 2014. 使用三级荟萃分析对依赖效应大小进行建模:一种结构方程建模方法。《心理方法》19,2(2014),211。[4] Andy Cockburn、Carl Gutwin 和 Alan Dix。2018. 不再 HARK:关于 CHI 实验的预注册。在 2018 年 CHI 计算机系统人为因素会议论文集(加拿大魁北克省蒙特利尔)(CHI '18)。美国计算机协会,美国纽约州纽约,1-12。https://doi.org/10.1145/3173574.3173715 [5] Jacob Cohen。1988. 行为科学的统计功效分析。(第 2 版)。Taylor & Francis 有限公司。[6] Geoff Cumming。 2013. Cohen 的 d 需要易于解释:对 Shieh (2013) 的评论。行为研究方法 45, 4 (2013),968–971。[7] Geoff Cumming 和 Robert Calin-Jageman。2016. 新统计学导论:估计、开放科学及其他。劳特利奇。[8] Mark Dunlop 和 John Levine。2012. 触摸屏键盘的多维帕累托优化,以提高速度、熟悉度和改进拼写检查。在 SIGCHI 计算机系统人为因素会议论文集(美国德克萨斯州奥斯汀)(CHI '12)中。计算机协会,美国纽约州纽约,2669–2678。 https://doi.org/10.1145/2207676.2208659 [9] Alexander Eiselmayer、Chat Wacharamanotham、Michel Beaudouin-Lafon 和 Wendy E. Mackay。2019 年。Touchstone2:一种用于探索人机交互实验设计权衡的交互式环境。在 2019 年 CHI 计算机系统人为因素会议(英国苏格兰格拉斯哥)(CHI '19)论文集上。美国计算机协会,纽约,纽约州,美国,1-11。https://doi.org/10.1145/3290605.3300447 [10] Franz Faul、Edgar Erdfelder、Axel Buchner 和 Albert-Georg Lang。2009 年。使用 G* Power 3.1 进行统计功效分析:相关和回归分析检验。行为研究方法 41,4(2009 年),1149–1160。[11] Anna Maria Feit、Daryl Weir 和 Antti Oulasvirta。2016 年。我们如何打字:日常打字中的动作策略和表现。 2016 年 CHI 计算机系统人为因素会议论文集(美国加利福尼亚州圣何塞)(CHI '16)。美国计算机协会,纽约,纽约州,美国,4262–4273。https://doi.org/10.1145/2858036.2858233 [12] Leah Findlater 和 Jacob Wobbrock。2012 年。个性化输入:通过自动适应改进十指触摸屏打字。2016 年 SIGCHI 计算机系统人为因素会议论文集(美国德克萨斯州奥斯汀)(CHI '12)。美国计算机协会,纽约,纽约州,美国,815–824。 https://doi.org/10.1145/2207676.2208520 [13] Leah Findlater、Jacob O. Wobbrock 和 Daniel Wigdor。2011 年。在平板玻璃上打字:检查触摸表面上的十指专家打字模式。在 SIGCHI 计算机系统人为因素会议论文集(加拿大不列颠哥伦比亚省温哥华)(CHI '11)。计算机协会,美国纽约州纽约,2453–2462。https://doi.org/10.1145/1978942.1979301 [14] Mayank Goel、Leah Findlater 和 Jacob Wobbrock。2012 年。WalkType:使用加速度计数据适应移动触摸屏文本输入中的情境障碍。 SIGCHI 计算机系统人为因素会议 (美国德克萨斯州奥斯汀) (CHI '12) 论文集。美国计算机协会,纽约,纽约州,美国,2687–2696 页。https://doi.org/10.1145/2207676.2208662 [15] Aakar Gupta 和 Ravin Balakrishnan。2016 年。DualKey:通过手指识别实现微型屏幕文本输入。2016 年 CHI 计算机系统人为因素会议 (美国加利福尼亚州圣何塞) (CHI '16) 论文集。美国计算机协会,纽约,纽约州,美国,59–70 页。 https://doi.org/10.1145/2858036.2858052 [16] M. Harrer、P. Cuijpers、TA Furukawa 和 DD Ebert。2019 年。使用 R 进行元分析:实践指南。PROTECT Lab Erlangen(2019 年)。