可在课堂上穿着手术服,在实验室区域和实习时也必须穿着手术服(一些实习机构有特殊要求,例如,只能穿着犹他大学红色、黑色或海军蓝手术服)。如果在实验室和临床技能中不穿手术服,可以提供一次性实验室外套供在便服外使用。在实验室/临床环境区域练习技能时,也必须穿着包头鞋。
1 Stevens,2007年,Cell 131:1164; Howell等,2011 J Clin Invest。 121:1429; Schafer等,2012 Neuron 74:691; Stephan等,2012 Annu Rev Neurosci 35:369; Hong等,2016 Science。 352:712; Lui等,2016 Cell 165:921; Dejanovic等,2018 Neuron 100:1322; Vukojicic; Vukojicic等,2019,2019年,细胞代表29:3087; Williams等人,Williams等,2016 Mol Neurdegener 11:26:26:26:26; 2 Yednock等,2022 Int J Retina Vitreous 8:79; 3 Lansita等人,2017年国际毒理学杂志,36:4491 Stevens,2007年,Cell 131:1164; Howell等,2011 J Clin Invest。121:1429; Schafer等,2012 Neuron 74:691; Stephan等,2012 Annu Rev Neurosci 35:369; Hong等,2016 Science。352:712; Lui等,2016 Cell 165:921; Dejanovic等,2018 Neuron 100:1322; Vukojicic; Vukojicic等,2019,2019年,细胞代表29:3087; Williams等人,Williams等,2016 Mol Neurdegener 11:26:26:26:26; 2 Yednock等,2022 Int J Retina Vitreous 8:79; 3 Lansita等人,2017年国际毒理学杂志,36:449
我们提出了一个基于患者特定几何形状的全心 - 培根相互作用的解剖学详细计算闭环模型。整个心脏模型包括组织各向异性和快速传导系统模拟动作电位沿着牙室节点和His-Purkinje传导系统。我们将整个心脏模型与双室性起搏器模型耦合在一起,该模型处理由心脏模型模拟的心房和心室电图,并相干地产生起搏刺激。我们全心模型中的去极化和复极序列与健康和病理方案中的临床数据相干。此外,我们的结果表明,闭环模型可以在临床相关的情况(例如无尽的循环心动过速叛乱)中模仿心脏起搏器的相互作用。因此,我们的闭环系统提供了一个有希望的患者特异性环境,用于研究心脏组织与刺激装置之间的相互作用。
客观和影响声明。从两光子显微镜(下午2点)的血管分割的大脑血管造影在血液动力学分析和疾病诊断中具有重要的应用。在这里,我们开发了一种可概括的深度学习技术,用于准确2pm从多个下午2点设置获得的小鼠大脑中相当大区域的血管分割。该技术在计算上是有效的,因此非常适合大规模神经血管分析。简介。从下午2点开始血管造影的血管分割是脑血管血液动力学建模的重要第一步。基于深度学习的现有分割方法要么缺乏从不同成像系统中概括数据的能力,要么在大规模血管造影上计算上不可行。在这项工作中,我们通过一种可以推广到各种成像系统的方法来克服这两个局限性,并且能够分割大规模血管造影。方法。我们采用了一个具有损失函数的计算上有效的深度学习框架,该损失函数结合了网络输出的平衡二进制跨性损失和总变化正则化。在从尺寸为808×808×702μm的小鼠大脑中获得的实验获得的体内血管造影中,其效果得到了证明。结果。为了证明我们的框架的卓越概括性,我们从下午2点开始训练数据,并在没有任何网络调整的情况下从不同显微镜中展示了来自不同显微镜的数据的高质量分割。结论。总的来说,与最先进的艺术相比,我们的方法以每秒分段和3×更大的深度来证明10×更快的计算。我们的工作为脑血管系统提供了可概括且计算上有效的解剖建模框架,该框架由深度学习的血管分割组成,然后是图形。它为未来建模和分析血液动力学反应的道路铺平了道路,这是以前无法访问的更大的尺度。
ANAT 301. 多模态人体解剖学。4 个学分。本课程使用尸体解剖和数字 3D 技术(包括创新的 Microsoft HoloLens)向学生介绍人体的大体解剖结构。它与大多数传统解剖学课程(包括 ANAT 411)的不同之处不仅在于它使用了三维成像技术,还在于它采用的是系统方法而非局部方法;人体结构是通过研究器官系统(例如神经系统、肌肉系统)而不是一次只关注一个区域(例如胸部或下肢)来学习的。这种方法让学生对人体的组织方式有了“大致了解”,从而为其他更详细地介绍人体解剖结构的课程奠定了坚实的基础。尸体演示让学生能够在上下文中看到解剖系统,并应用通过虚拟技术学到的知识。以 ANAT 301 和 ANAT 401 的形式提供。
心脏解剖结构的运动对心脏功能和疾病的发展有很大影响。对心脏解剖结构分析的先前贡献主要集中在心脏周期中的一个或两个阶段。然而,通过在整个心脏周期中对解剖学中的运动异常的分析和量化,可以更完整地了解心脏血管疾病。在这项工作中,我们提出了一条能够重建和结束双术解剖结构的连续时间表示,从car-diac循环中的有限时间点进行了连续的时间表示。我们证明了所提出的模型提供了解释性解剖学的几何和运动特征的可解释量化。我们对190名受试者的数据集进行分析表明,从构图模型中的重建是准确的到亚像素分辨率,平均倒角距离为1.71(±1.13)毫米。
• 在为申请加州大学校园的学生提供建议时,您是否使用过 UC TAP?在为申请加州大学校园的学生提供建议时,您是否使用过 UC TAP?在为申请加州大学校园的学生提供建议时,您是否使用过 UC TAP?
单细胞(受精卵)发育成由数百万个细胞组成的动物是生物学中最令人惊奇的现象之一。几千年来,它一直激励着科学家。本模块将考虑动物发育背后的细胞和分子事件,借鉴一系列脊椎动物和无脊椎动物模型生物(包括线虫、果蝇、海胆、斑马鱼、青蛙和小鸡)的例子。它旨在将学生对发育生物学的知识和理解提升到当前研究的水平。主题将包括轴形成、原肠胚形成、神经诱导、神经系统模式、神经嵴、基因调控网络、左右不对称、昼夜节律钟、眼睛发育、干细胞、小鼠胚胎的转基因、线虫和苍蝇早期发育的遗传研究。该模块(CELL0002)的 30 学分版本还将包括 5-6 个实验室实践(例如果蝇、非洲爪蟾、斑马鱼、小鸡、哺乳动物、秀丽隐杆线虫)。