我们,Christoph Boehm 和 Niklas Kroner,在此声明,我们与论文“美国经济新闻和全球金融周期”中描述的研究没有任何相关或重大的经济利益。我们感谢编辑(Kurt Mitman)、三位匿名审稿人以及 Ambrogio Cesa-Bianchi、Olivier Coibion、Charles Engel、Benjamin Hebert、Zhengyang Jiang、Luciana Juvenal、Sebnem Kalemli-Ozcan、Benjamin Knox、Andrei Levchenko、Guido Lorenzoni、Matteo Maggiori、Silvia Miranda-Agrippino、Peter Morrow、Nitya Pandalai-Nayar、 Marco Pinchetti、Alessandro Rebucci、Helene Rey、Jesse Schreger、Eric van Wincoop、Francesco Zanetti、Tony Zhang,以及 UT Austin、Bocconi、马里兰州、美联储委员会、Carleton、KU Leuven、IWH Halle、Stanford GSB、Notre Dame、ASSA 2020、CEA 2021、EEA-ESEM 2021、EWMES 的研讨会和会议参与者2020年, NASMES 2021、RES 2021、SMYE 2021、SED 2021、GEA 2022、CFM 国际宏观会议 2022 和 NBER SI 2022 提供的有益评论。我们感谢 Olivier Coibion、Stefano Eusepi、Nitya Pandalai-Nayar、Aysegul Sahin 和德克萨斯大学奥斯汀分校经济学系提供的资金支持,以购买本文中使用的专有数据。我们感谢 Domenico Giannone、Refet Gurkaynak、Burcin Kisacikoglu、Chiara Scotti、Clara Vega 和 Jonathan Wright 慷慨地与我们分享数据和程序。我们还要感谢 Gregory Weitzner 帮助我们访问部分数据。本文的先前版本以“高频识别告诉我们有关商业周期的传输和同步的什么?”为标题发布。所表达的观点为作者的观点,并不一定反映联邦储备委员会、联邦储备系统或国家经济研究局的观点。
∗ 我们感谢 Steven Davis、Douglas Diamond、João Granja、Lars Peter Hansen、Zhiguo He、John Heaton、Kilian Huber、Matthew Jaremski、Sebnem Kalemli-Ozcan、Anil Kashyap、Ralph Koijen、Andrei A. Levchenko、Yueran Ma、Tyler Muir、Stefan Nagel、Elias Papaioannou、Nagpurnanand Prabhala、Raghuram Rajan、Amir Sufi、Philip Strahan、Chad Syverson、Pietro Veronesi、Jessie Wang、Michael Weber、Thomas Winberry、Luigi Zingales 和 Eric Zwick 提供的有益评论和建议。我们感谢 Evren Örs 分享有关各州成对出口进口的数据,感谢 Fabrizio Perri 分享他的 MATLAB 代码。我们还要感谢第 16 届宏观金融学会研讨会 2020 的研讨会参与者、OFR 博士。 2020 年金融稳定研讨会、2020 年第五届经济学实证与方法会议 (EMCON)、2020 年青年经济学家研讨会、芝加哥金融午餐会、2021 年中西部金融协会会议、CEPR 金融中介和公司金融无尽夏季会议、芝加哥经济动态与金融市场工作组和加州大学洛杉矶分校宏观金融研讨会。Nishant Vats 感谢 Liew Fama-Miller 奖学金的资金支持。Shohini Kundu 的贡献是在欧洲央行赞助的 Lamfalussy 奖学金计划下准备的。所代表的任何观点仅代表作者的观点,并不一定代表欧洲央行或欧洲央行体系的观点。我们没有任何利益冲突需要披露。我们对所有错误负责。† Shohini Kundu 就职于加州大学洛杉矶分校安德森管理学院。电子邮件:shohini.kundu@anderson.ucla.edu
Evoke Systems Raymond Kaiser FedEx Corporation David Cienfuegos Ford Doug Burkett General Motors Julian Galonska Globalautoregs.com John John Creamer Hendry&Associates Anne Hendry Idaho Idaho国家实验室(INL) Code Council (ICC) Ryan Colker Intertek Rich Byczek 3 Lawrence Berkeley National Laboratory (LBNL) Bruce Nordman LineHaul Station, LLC Jeff Swenson Magna International Brooke Scott Massachusetts Department of Transportation Paul Tykodi McGill University Geza Joos, Prof. (IEEE) Mercedes Benz Research and Development North America, Inc Arun Sankar MotoRad Jacob艾萨克森国家电气承包商协会(NECA)迈克尔·约翰斯顿(NECA),凯尔·克鲁格(Kyle Krueger)国家电气制造商协会(NEMA)史蒂夫·格里菲斯(Nema),史蒂夫·格里菲斯(Steve Griffith) Nathaniel Schomp Oncor电力送货David Teeichler Pacific Northwest National Laboratory(PNNL)Gregory Dindlebeck,3 Matt Paiss,Matt Paiss,Frank Tuffner Powertech Labs Inc. Vidya vidya vidya vidya vidya vidya vidya vidya vidya vancayala公共服务电气和天然气(PSE&G)泰勒·雷默(Tyler Reamer),布莱恩·里奇(Bryan Ritchie)雷德兰能源集团(John Howes)
• Maximilian Fleischer(西门子能源) • Nicola Armaroli(CNR - 意大利国家研究委员会) • Lipsa Nag(大理石工作室) • Fabien Ramos(欧洲委员会,气候与能源总司) • Phillipe Schild(欧洲委员会,研究与发展总司) • Vera Grimm(德国联邦教育与研究部) • Carina Faber(欧洲创新委员会) • Francesco Matteucci(欧洲创新委员会) • Ekke Van Vliet(欧洲创新委员会) • Dennis Krämer(DECHEMA) • Hannah Johnson(丰田汽车欧洲公司) • Csaba Janaky(Echemicles) • Philipp Engelkamp(Ineratec GmbH) • Gill Scheltjens(D-CRBN) • Ennio Capria(欧洲同步辐射装置) • Miet Van Dael(VITO) • Tom Aernouts(imec-IMMOMEC) • Eric De Coninck(安赛乐米塔尔) • Bill Tumas(国家可再生能源实验室) • Moritz Schreiber(TotalEnergies) • Ifan Stephens(伦敦帝国学院) • Luis Sanz Tejedor(欧洲专利局) • Nicolas Pluméré(慕尼黑工业大学) • Pau Farras(戈尔韦大学) • Rachel Armstrong(鲁汶大学) • Iker Aguirrezabal(巴斯克大学) • Michael Eikerling (于利希研究中心) • Joanna Kargul (华沙大学 CENT) • Muriel Matheron (CEA) • Laura Torrente Murciano (剑桥大学) • Francesca M. Toma (亥姆霍兹赫伦中心) • Talat Çorak (Agrirossa) • Sylvain Cros (巴黎综合理工学院) • Deepak Pant (VITO) •弗雷德里克·钱德松 (CEA) • Kristof Verbeeck(安赛乐米塔尔比利时) • Guus Keder(Fenix Ventures) • Virgil Andrei(剑桥大学) • Joachim John(IMEC) • Anne-Marie Sassen(欧洲创新委员会)
教授博士Ayhan EROL/阿菲永科卡特佩大学教授博士Ahmad I. AYESH/卡塔尔大学,卡塔尔教授博士Ali GUNGOR/卡拉布克大学副教授教授博士Aisha IHSAN/国家研究所巴基斯坦生物技术与工程学教授博士艺术。 A. Ali 教授/吉大港大学博士Alpay OZER/加齐大学教授博士N. Alper TAPAN/加齐大学教授博士Ammar NAYFEH / 阿联酋哈利法大学副教授教授博士Ayhan ORHAN/菲拉特大学教授博士Andrei Kovalevsky/阿威罗大学/PT Assoc.教授博士Gokhan SURUCU/Gazi 大学副教授教授博士Ersin BAHCECI/伊斯肯德伦技术大学副教授教授博士Abdullah CANDAN/Kirsehir Ahi Evran 大学教授博士Aytunç ATES/A. Yildirimbeyazit 大学副教授教授博士Aytac ERKISI/帕穆卡莱大学副教授教授博士Babek ERDEBILLI/A. Yildirim Beyazit 大学副教授教授博士Battal DOGAN/加齐大学教授博士Bekir OZCELIK/库库罗瓦大学副教授教授博士Bilge IMER/中东技术大学教授博士Bulent YESILATA/A. Yildirim Beyazit 大学教授博士S. Bora 高中视频/Gazi 大学教授博士C. SURYANARAYANA 教授/美国奥兰多中佛罗里达大学博士Canan VARLIKLI/伊兹密尔理工学院教授博士Dmitry GORIN /SCP& QM 斯科尔科沃研究所科学的和技术,俄罗斯教授博士Emine ALDIRMAZ/阿马西亚大学教授博士Guven CANKAYA/ A. Yildirim Beyazid 大学 / Roketsan Assoc.教授博士Fatih CALISKAN/萨卡里亚应用科学大学
1。Andrei,E。Y.等。 Moiré材料的奇迹。 nat Rev Mater 6,201–206(2021)。 2。 Cao,Y。等。 在魔术角石墨烯超级晶格中半填充时相关的绝缘体行为。 自然556,80–84(2018)。 3。 Tang,Y。等。 在WSE2/WS2Moiré超级晶格中模拟Hubbard模型物理。 自然579,353–358(2020)。 4。 Regan,E。C。等。 Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。 自然579,359–363(2020)。 5。 Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Andrei,E。Y.等。Moiré材料的奇迹。nat Rev Mater 6,201–206(2021)。2。Cao,Y。等。 在魔术角石墨烯超级晶格中半填充时相关的绝缘体行为。 自然556,80–84(2018)。 3。 Tang,Y。等。 在WSE2/WS2Moiré超级晶格中模拟Hubbard模型物理。 自然579,353–358(2020)。 4。 Regan,E。C。等。 Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。 自然579,359–363(2020)。 5。 Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Cao,Y。等。在魔术角石墨烯超级晶格中半填充时相关的绝缘体行为。自然556,80–84(2018)。3。Tang,Y。等。 在WSE2/WS2Moiré超级晶格中模拟Hubbard模型物理。 自然579,353–358(2020)。 4。 Regan,E。C。等。 Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。 自然579,359–363(2020)。 5。 Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Tang,Y。等。在WSE2/WS2Moiré超级晶格中模拟Hubbard模型物理。自然579,353–358(2020)。4。Regan,E。C。等。 Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。 自然579,359–363(2020)。 5。 Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Regan,E。C。等。Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。自然579,359–363(2020)。5。Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Wang,L。等。在扭曲的双层过渡金属二分法中相关的电子相。nat Mater 19,861–866(2020)。6。Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Cao,Y。等。魔法石墨烯超级晶格中的非常规的超导性。自然556,43-50(2018)。7。lu,X。等。超导体,轨道磁铁和魔法双层石墨烯中的相关状态。自然574,653–657(2019)。8。Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Cai,J。等。扭曲的Mote2中分数量子异常圆度状态的签名。自然622,63-68(2023)。9。Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Park,H。等。观察分数量化的异常霍尔效应。自然622,74–79(2023)。10。Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Zeng,Y。等。MoiréMote2中分数Chern绝缘子的热力学证据。自然622,69–73(2023)。11。lu,Z。等。自然626,759–764(2024)。多层石墨烯中的分数量子异常霍尔效应。12。Xu,F。等。观察整数和分数量子异常大厅效应
[3] Huan Zhao; Linghan Zhu;江西li; Vigneshwaran Chandrasekaran;乔恩·凯文·鲍德温(Jon Kevin Baldwin);迈克尔·佩特斯(Michael t Pettes); Andrei Piryatinski;李阳;汉·htoon。操纵近红外量子光生成的层间激子。纳米字母。2023,23,11006-11012。[4] Xiangzhi li;安德鲁·琼斯(Andrew C Jones); Junho Choi; Huan Zhao; Vigneshwaran Chandrasekaran;迈克尔·佩特斯(Michael t Pettes); Andrei Piryatinski; ma rta a tschudin;帕特里克·雷瑟(Patrick Reiser);大卫百老汇。在应变工程WSE2/NIPS3异质结构中,接近诱导的手性量子光生产生。自然材料。2023,22,1311-1316。[5] Huan Zhao;迈克尔·佩特斯(Michael t Pettes); Zheng;汉·htoon。位点对照的电信波长单光子发射器在原子上薄的Mote2中。nat Commun。2021,12,6753。[6] Huan Zhao; Beibei Wang; Fanxin Liu;小对Haozhe Wang; Wei Sun Leong;马克·史蒂文斯(Mark J Stevens); Priya Vashishta; aiichiro nakano;庆。流体流有助于范德华材料的确定性折叠。高级功能材料。2020,30,1908691。[7] Tong Wu†; Huan Zhao†; Fanxin Liu; Jing Guo;汉王。设备的机器学习方法 - 基于随机设备设备的玻尔兹曼机器的电路合作。ARXIV预印ARXIV:1905.04431。2019。[8] Shanyuan Niu†; Huan Zhao†; Yucheng Zhou; Huaixun Huyan;博伊恩赵;江宾;斯蒂芬·B·克罗宁(Stephen B Cronin);汉王; Jayakanth Ravichandran。中波和长波红外线二色性二色性二色性在六角形钙钛矿甲状腺素中。材料的化学。2018,30,4897-4901。[9] Shanyuan Niu†;格雷厄姆·乔†; Huan Zhao†; Yucheng Zhou;托马斯·奥维斯(Thomas Orvis); Huaixun Huyan;贾德·萨尔曼(Jad Salman); Krishnamurthy Mahalingam;布列塔尼·乌尔文(Brittany Urwin);江宾·吴(Jiangbin Wu)巨大的光学各向异性在准尺寸晶体中。nat光子学。2018,12,392。[10] Ivan Esqueda; Huan Zhao;汉王。有效的学习和横杆操作,具有原子薄的2-D材料化合物突触。应用物理学杂志。2018,124,152133。[11] Zhipeng Dong; Huan Zhao;唐·迪马齐奥(Don Dimarzio); Myung-Geun Han; Lihua Zhang;杰西·蒂斯(Jesse Tice);汉王; Jing Guo。由2-D材料启用了原子上的CBRAM:缩放行为和性能限制。电子设备上的IEEE交易。2018,65,4160-4166。[12] Huan Zhao; Zhipeng Dong;他天;唐·迪马尔兹(Don Dimarzi); Myung-Geun Han; Lihua Zhang;小对Fanxin Liu;朗山; Shu-Jen Han。原子上薄的femtojoule候选装置。高级材料。2017,29,1703232。[13] Bolin Liao†; Huan Zhao†; Ebrahim Najafi;小对他天;杰西·蒂斯(Jesse Tice);奥斯汀·J·明尼奇(Austin J Minnich);汉王;艾哈迈德·H·泽尔(Ahmed H Zewail)。黑磷中各向异性光载体动力学的时空成像。纳米字母。2017,17,3675-3680。[14] Huan Zhao†; Yuanrui li;道格拉斯·奥尔伯格(Douglas Ohlberg); Wei Shi; Wei Wu;汉王; ping-heng tan。 单层钼二硫化物纳米纤维具有高光学各向异性。 高级光学材料。 2016,4,756-762。 纳米研究。 2015,8,3651-3661。[14] Huan Zhao†; Yuanrui li;道格拉斯·奥尔伯格(Douglas Ohlberg); Wei Shi; Wei Wu;汉王; ping-heng tan。单层钼二硫化物纳米纤维具有高光学各向异性。高级光学材料。2016,4,756-762。纳米研究。2015,8,3651-3661。[15] Huan Zhao†; Jiangbin Wu†;宗宗; qiushi guo;小王;富兰斯Xia;李阳; Pingheng tan;汉王。在各向异性原子上稀薄的鼻鼻中的层间相互作用。[16] Yichen Jia; Huan Zhao; qiushi guo;小王;汉王;冯米亚。可调节的等离子体 - 声子偏振子中的分层石墨烯 - 甲状腺氮化硼异质结构。acs光子学。2015,2,907-912。[17] Huan Zhao; qiushi guo;富兰斯Xia;汉王。 二维材料用于纳米素化的应用。 纳米素化学。 2015,4,128-142。 [18]小王;亚伦·琼斯(Aaron M Jones);凯尔·塞勒(Kyle L Seyler); vy tran; Yichen Jia; Huan Zhao;汉王;李阳; Xiodong Xu;冯米亚。 单层黑磷中高度各向异性和稳健的激子。 纳米技术。 2015,10,517-521。[17] Huan Zhao; qiushi guo;富兰斯Xia;汉王。二维材料用于纳米素化的应用。纳米素化学。2015,4,128-142。[18]小王;亚伦·琼斯(Aaron M Jones);凯尔·塞勒(Kyle L Seyler); vy tran; Yichen Jia; Huan Zhao;汉王;李阳; Xiodong Xu;冯米亚。单层黑磷中高度各向异性和稳健的激子。纳米技术。2015,10,517-521。
Jens 1(IEEE高级成员),Masoud Babaie 2(成员,IEEE),Joseph C. Bardin 3,4(高级成员,IEEE),Imran Bashir 5(IEEE,IEEE),Gerard Billiot 6,Elena Blokhina Blokhina Blokina Blokina Blokina Blokina 5,7,8(IEEE,IEEE,SHAIEE),SHAI CHIA,IEEE,IEEE,IE,IE,IE,IE,IE,IEEE,IE,IEEE,IE,IE,IE,IE。 Ini 11,12,Isaac L. Chuang 11,13,14,Carsten Degenhardt 15,Dirk Englund 11,Lotte Geck 15,16,LoïckLeGuevel 3,6 3,6(同胞,IEEE,IEEE),RUONAN HAN 14(IEEE,IEEE),MOHAMM I. I. I. I. I. I. I.14.14.14.14.14.18(I.14)(18岁) 6,Jeremy M. Sage 20,Fabio Sebastian 2(IEEE高级成员),Robert Bogdan Staszewski 7.8(同胞,IEEE),Jules Stuart 11,12,13,Andrei Vladimirescu 21(IEEE)(IEEE) 70049德国Stuttgart 2 Delft技术大学,2628 CD DELFT,荷兰3马萨诸塞州阿默斯特大学,马萨诸塞州阿默斯特,美国马萨诸塞州01003美国4 Google LLC,Goleta,CA 93117 USA 94536 USA 94536 USA 94536美国6 Grenoble Alps Universition of Grenoble Alps,Cea-nimerniver,cea-electricering firnicer,f-38000 grenoble france,frane frane frane frane frane frane frane frane frane,爱尔兰都柏林8等labs,爱尔兰都柏林4号。多伦多大学电气工程系,M5S 3G4,加拿大10écolePolytechnique de Lausne,2002年,瑞士Neuchâtel,瑞士Neology,剑桥,马萨诸塞州剑桥市12美国12林肯大学,马萨诸塞州林肯大学林肯大学,马萨诸塞州马萨诸塞州,马萨诸塞州02139美国15个电子系统(EZEA-2),中央工程研究所,电子和分析学院,52428 CH,德国16电气工程和信息技术学院,RWTH AACHEN UNIVERPON伊萨卡,纽约州14853美国19个州关键实验室,科学与技术学院,科学技术学院。
摘要 本文讨论了用信息和意识来描述宇宙或自然的优势。理论物理学家在寻求万物理论的过程中遇到的一些问题源于试图仅用物质和能量来理解万物的局限性。然而,如果用信息和意识来描述一切,包括物质、能量、生命和心理过程,那么在寻找宇宙的终极理论方面就会取得很大进展。尽管物理学和化学在过去两个世纪里取得了辉煌的成功,但重要的是不能只用物质和能量来看待自然。要解开她的秘密,还需要两个额外的组成部分。虽然有大量的著作描述了物质和能量之间的联系及其物理基础,但很少有人研究物质、能量、信息和意识之间的特殊关系。关键词意识、数字物理、电子、能量、信息、物质、粒子、关系、弦理论、万物理论。 1. 引言 绝大多数物理学家认为宇宙是由物质构成的,物质又由原子构成,原子由电子、质子和中子等粒子构成,质子和中子由夸克构成。简而言之,我们从物理学和化学中得知,一切都是由物质构成的。显然,大多数科学家认为亚原子粒子是我们宇宙的基础。此外,弦理论告诉我们,亚原子粒子不是标准模型所假设的点状物体,而是微小的弦。这些弦以不同的频率振动,每种不同的振动都会产生不同的粒子。弦理论是万物理论 (ToE) 最有希望的候选理论之一。它提出亚原子粒子是微小的弦,在我们看来它们就像点一样。尽管如此,尽管有这样的理解,仍有相当多的研究人员,包括 Seth Lloyd [1]、Stephen Wolfram [2]、Carlos Gershenson [3] 和 Michael Egnor [4],提出信息是宇宙最基本的组成部分。宇宙由比特组成的观点正在科学界逐渐形成。比特是二进制数字的首字母缩写,是计算机中最小的数据单位。一个比特只有一个二进制值:零或一;或者说是信息的量子比特。量子比特代表量子比特。在量子计算中,这是量子信息的基本单位,是经典二进制比特的量子版本,物理上是用双态设备实现的,正如 Andrei Khrennikov [5] 正确指出的那样。在
我想首先感谢我的博士主管Hae-Young Kee教授。在过去的几年中,她一直指导和指导我,并与我一起度过了最好和最糟糕的时代。我只能希望我从互动中成为一个更好的人,我将永远随身携带她教给我的教训。我要感谢我的监督委员会,杨·博克(Yong-Baek Kim)教授和斯蒂芬·R·朱利安(Stephen R. Julian)教授,以支持整个计划的委员会成员和老师。说我遇到了很多人是轻描淡写的。Whether it be fleshing out physics ideas or casual quality of life interactions I would like to thank in no spe- cific order Andrei Catuneanu, Jacob S. Gordon, Austin Lindquist, Nazim Boudjada, Emily Zinnia Zhang, Vijin Venu, Peihang Xu, CJ Woodford, Daniel Baker, Leonardo Jose Uribe Castano, Sopheak Sorn,Wonjune Choi,Li Ern Chern,Geremia Mas-Sarelli,Adarsh Patri,Eli Bourassa,Eli Bourassa,Ilan Tzitrin,Heung-Sik Kim,Yige Chen,Vijay Shankar Venkataraman,Robert Scha函数Diana Swiecicki,Ilia Khait,Pranai Vasudev,Sergey Eyderman。非常感谢您向Heung-Sik Kim提供无尽的帮助,希望我不会像我怀疑那样打扰您。我相信,如果不是我的朋友,同事和同志Aris Spourdalakis和Dionysia Pitsili-Chatzi,我不会活着,我永远对此表示感谢。在我的努力中,他们无休止的支持,我非常感谢我的母亲Panagiota Karouni和姐姐Stavroula Stephi Stavropoulos。感谢您多年来的支持和支持。我也很感激我的朋友在海洋中,瓦西利斯·罗卡吉(Vasilis Rokaj),彼得罗斯·安德烈亚斯(Petros Andreas Pantazopoulos),乔治·巴塔吉安尼斯(George Batagiannis),perseas christodoulidis,gilho ahn,savvas ros-tadis,savvas rostadis,kalliopi souvatzi,以保持我的精神振奋。最后,我将不感谢物理学系的所有受雇于的工作,他的持久工作使我和其他所有研究生都成为可能。特别感谢伊莎贝拉(Isabella)在该部门的晚上工作之夜是友好的面孔。