非线性动态逆是针对大迎角机动问题研究最多的非线性控制技术。非线性动态逆是一种基于系统动力学逆的反馈线性化方法 [1]。通常,飞机动力学可分为两类:慢速动力学和快速动力学,F-16 也不例外。慢速动力学对于固定翼飞机是相同的,可以使用风轴微分方程推导。另一方面,快速动力学对于每架飞机都是独一无二的,在推导飞机的快速动力学时必须包括空气动力学数据库。本文使用了基于 NASA 兰利和艾姆斯研究中心的 F-16 风洞试验结果的亚音速气动数据库 [1]。该数据库适用于 和每种飞行条件。因此,它是在大攻角区域测试新开发的控制律的合适平台。在 Simulink 环境中开发了 F-16 的 6 自由度数学模型。数学模型包括气动数据库、发动机模型、大气方程和运动方程 [3]、[4]。开发了平飞、爬升、下降和稳定平转飞行条件下的配平算法 [5]。此外,还基于小扰动理论推导出了线性化算法 [6]。为了比较非线性动态逆控制律和线性控制律的性能,设计了横向和纵向运动的线性控制增强系统。采用特征结构分配技术综合了线性控制律。纵向控制器是一种简单的迎角控制指令系统,使用 F-16 飞机的短周期动力学设计而成。横向控制器是一种侧滑和稳定轴滚转速率指令系统,使用 F-16 飞机的线性化横向稳定轴方程设计而成。线性控制器的设计过程最终根据高度和速度安排增益矩阵,以实现全包络有效飞行控制律。使用预定义的大迎角机动对线性和非线性飞行控制律进行了比较。这种机动被定义为快速且同时的俯仰和滚转运动。虽然拉起运动在迎角和之间变化,但滚转运动在倾斜角保持恒定。随着攻角的增大,纵向和侧向动力学无法分离,因此增益调度线性控制器和非线性动态逆控制器的机动能力变得重要。
我在此提交一篇由 Chris A. Hadfield 撰写的论文,题为“高攻角操控品质评定量表”。我已检查了该论文的最终电子版形式和内容,并建议接受该论文作为部分满足理学硕士学位(主修航空系统)的要求。
船舶的六个自由度 ................................................ ..船舶轴线相对于 Eanh 轴线的相对位置 .................................. .涌浪力与涌浪速度之间的图形关系 阻力曲线的图形表示 ................................ .螺旋操纵的图形表示 ................................ ..舵角和角速度图的绘制:(A)动态稳定船舶 ............................................................. ..舵角和角速度图的绘制:(B)动态不稳定船舶 ............................................................. .. GZ 曲线的图形表示:(A)静态稳定船舶 ............................................................. .GZ 曲线的图形表示:(B)静态不稳定船舶 ................................................................ .. 推力曲线的图形表示 ................................................ ..动态稳定船舶的 Kemf Zig zag 机动 动态不稳定船舶的 Kemf Zig zag 机动 ............................................................................................................. .阻力曲线的图形说明 ............................................................................. .比例模型阻力曲线的图形表示 .. .. 纵向拖曳时舵处于攻角的模型方向 ............................................................................. ..显示测量的偏航力矩和舵角的图表 ............................................................................................. .显示测量的摇摆力和舵角的图表 ...... .比例模型阻力曲线图 ................................ ..攻角模型方位图:(A)舵与模型中心线对齐 ........................ .攻角模型方位图:(B)舵与拖曳水池中心线对齐 ........................ .. JL/测量比例模型图示:偏航力矩与摇摆速度图 ........................ .测量比例模型图示:摇摆力与摇摆速度图 ................................ ..平面运动机构图示 ................................ .船首和船尾之间相位差为零的模型轨迹 ............................................................................................. .PM M 下模型的正弦路径...................................... ..模型的旋转臂运动................................................ ..显示测量的摇摆力与角速度的关系的图表............................................................................................. .显示测量的偏航力矩与角速度的关系的图表............................................................................................. ..
1电气和电子工程学院,敦侯赛因大学马来西亚大学,UTHM,BATU PAHAT 86400,马来西亚Johor 2高级传感设备和技术FG,电气和电子工程学院,Tun Hussein Onn University,Tun hussein onn University,uthm电气和电子工程,Nanyang Technological University,新加坡639798,新加坡4 Emtex CTS SDN。bhd。孵化器空间,第2级,研究大楼,F6,Tun Hussein Onn Malaysia,Parit Raja,Batu Pahat 86400,马来西亚Johor 5电信研究与创新(CERTI),电子工程与计算机工程学院(FKEKK),马六甲技术大学(UTEM),MALASYIA,马来西亚Melaka *通信 *通信:Ahmedjamal@utem.edu.edu.my(A.J.A.-G.); zahriladha@utem.edu.my(Z.Z.)†这些作者为这项工作做出了同样的贡献。
,我们为当年的收入提供了650亿美元的收入,占当地货币增长2%,同时继续以四季度滚动的市场份额,这是我们最接近的全球公开交易竞争对手的篮子,这是我们计算市场份额的方式。我们将调整后的运营利润率提高了10个基点,并传递了调整后的EPS增长2%,同时继续对我们的业务进行大量投资,并以66亿美元的战略收购,12亿美元的研究和开发和12亿美元的学习和发展投资。
MA900是一种非接触式,精确,磁性绝对角度传感器。从传感器IC上多个位置的磁场差异中提取角度。这种差异方法消除了寄生磁场的贡献,非常适合用简单的目标磁体放置在轴末端的传感器。对于快速数据采集和处理,MA900以从0rpm到100,000rpm的速度提供准确的角度测量。
了解电子 - 波相互作用在根本上很重要,并且对设备应用具有至关重要的影响。但是,在魔法角度附近的扭曲的双层石墨烯中,目前缺乏这种理解。在这里,我们使用时间和频率分辨的光电压测量方法研究电子音波耦合,作为声子介导的热电子冷却的直接和互补探针。我们发现在魔术角靠近扭曲的双层石墨烯的冷却时,我们发现了一个显着的加速:冷却时间是从室温下降到5 kelvin的几次picseconds,而在原始的双层石墨烯中,在较低温度下,冷却到声子变为较慢。我们的实验和理论分析表明,这种超快冷却是超晶格形成的组合作用,具有低功能的Moiré声子,空间压缩的电子Wannier轨道以及降低的超晶格Brillouin区域。这可以实现有效的电子 - phonon umklapp散射,从而克服了电子 - phonon动量不匹配。这些结果将扭转角建立为控制能量放松和电子热流的有效方法。
摘要:多糖材料和生物材料因其在化学结构和修饰的可能性中的多功能性及其生物相容性,可降解性和可持续性特征而获得了激烈研究的重点。本综述着重于SAN在多糖系统上应用的最新进展,这些系统涵盖了纳米构成组件,水凝胶,纳米复合材料以及植物启发纳米结构系统等广泛材料。它通过证明对比度变化和对比匹配方法的特征,并报告数据分析和解释的方法,从而激发了SAN的全部潜力使用。由于这些软物质系统可以根据其组件之间的相互作用和化学键进行多个长度尺度组织,因此SANS为高级表征和优化了新的纳米结构多糖材料提供了出色和独特的机会。
由于其优异的性能,先进陶瓷、金属和复合材料等硬质材料具有巨大的经济和社会价值,可应用于众多行业。了解它们的微观结构特征对于提高其性能、材料开发和释放其未来创新应用的潜力至关重要。然而,它们的微观结构显然是分层的,通常跨越几个长度尺度,从亚埃到微米,这对它们的表征提出了严峻的挑战,尤其是原位表征,这对于理解控制微观结构形成的动力学过程至关重要。本综述全面描述了快速发展的超小角度 X 射线散射 (USAXS) 技术,这是一种探测硬质材料纳米到微米级特征的无损方法。USAXS 及其补充技术在为硬质材料开发和应用时,可以提供有关其孔隙率、晶粒尺寸、相组成和不均匀性的宝贵见解。我们讨论了 USAXS 在硬质材料中的基本原理、仪器、优势、挑战和全球地位。通过选定的示例,我们展示了该技术在揭示硬质材料微观结构特征方面的潜力,以及它与先进材料开发和制造工艺优化的相关性。我们还提供了对 USAXS 持续发展的机遇和挑战的看法,包括多模态表征、相干散射、时间分辨研究、机器学习和自主实验。我们的目标是促进 USAXS 技术的进一步实施和探索,并激发它们在硬质材料科学的各个领域的更广泛应用,从而推动该领域的发现和进一步发展。
手对手生物电阻抗 (HH BIA) 是一种低成本的估算体脂百分比 (%BF) 的方法。BIA 方法始终可靠,但其有效性仍存在疑问。我们观察到,在使用 HH BIA 时,肘部位置会导致 %BF 测量值始终不同,因此引发了一个问题:肘部角度是否会影响使用 HH BIA 得出的测量值的有效性?本研究旨在评估肘部位置(即 IN=弯曲至 90° 对比 OUT=完全伸展)对 44 名男性和 24 名女性健康成年人(年龄 = 21±2 岁,BMI = 23±3)的 HH BIA 可靠性的影响。另一个目的是使用空气置换体积描记法 (BOD POD ® ) 作为标准测量,评估 HH BIA %BF 对一组受试者(n=12)的有效性。对于 HH BIA,IN 位置比 OUT 位置低 ~4%BF(p=0.05,效应大小 =0.67)。在 IN [组内相关系数 (ICC)=0.99,变异系数 (CV)=2.99%] 和 OUT(ICC=0.99,CV=1.48%)条件下两次试验的 %BF 测量值均高度可靠。在子样本中,OUT(18.3±6.7 %BF)位置超过了 IN(14.5±7.4 %BF)和 BOD POD ®(16.1±7.8 %BF)测量值(p<0.05);但是,IN 和 BOD POD ® 的 %BF 测量值没有差异(p=0.21)。这些发现支持了 HH BIA 在两个肘部位置都是可靠的测量方法;然而,根据肘部位置的不同,%BF 估计值与标准测量值存在很大差异(~4%)。我们发现 OUT 位置会高估标准 %BF。进一步的研究可能会揭示 HH BIA 估计 %BF 的最佳肘部角度位置。