在深度无弹性正面散射中,使用与HERA的H1检测器收集的数据测量Lepton-Jet方位角不对称性。When the average transverse momentum of the lepton-jet sys- tem, lvert ⃗ P ⊥ rvert , is much larger than the total transverse momentum of the system, lvert⃗q ⊥ rvert , the asymmetry between parallel and antiparallel configurations, ⃗ P ⊥ and ⃗q ⊥ , is expected to be gener- ated by initial and final state soft gluon radiation and can be predicted using perturbation theory.量化不对称的角度特性提供了对强力的额外测试。研究不对称性对于通过横向动量依赖(TMD)Parton分布函数(PDFS)产生的固有不对称的未来测量很重要,其中这种不对称构成了主要背景。方位角不对称的力矩是使用机器学习方法来测量不需要归安宁的。
光子霍尔效应 (PHE) 早在 20 多年前就被预测 [1] 并被测量 [2]。它指的是沿垂直于入射电流和磁场的优先方向散射的电磁通量,这与电子传导中的 (异常) 霍尔效应非常相似。研究表明,PHE 源自介电米氏球单次散射中的法拉第旋转 [3],并在纯电偶极耦合区域(瑞利区域)中消失。因此,PHE 不会发生在原子的单次光散射中,而是由多次散射 [4] 或电偶极跃迁与更高的多极子发生干涉时产生的 [5]。在最近的文献中,人们发现了许多或多或少相关的效应,例如光子自旋霍尔效应 [6–8]、光的量子自旋霍尔效应 [9]、声子霍尔效应 [10]、等离子体霍尔效应 [11] 甚至其他光子霍尔效应 [12]。在具有中心光源的散射介质中,沿 z 轴施加均匀磁场 B 0 时,PHE 表现为绕场线旋转的电流。与 PHE 相关的坡印廷矢量由 S PHE = DH b B 0 × ∇ ρ ( r , t ) 给出,其中 ρ ( r , t ) 为电磁能量密度,DH ( B 0 ) 为霍尔扩散常数,其符号由法拉第旋转方向决定。最简单的情况是考虑一个点源 P ( r , t ) = P ( t ) δ ( r ),将功率 P 注入扩散常数为 D 的无限扩散介质中。对于单次能量为 W 的辐射,P ( t ) = Wδ ( t ),我们可以代入扩散方程的著名解,得到:
一名 74 岁女性,有胸闷病史。她遵循素食饮食,抱怨疲劳和运动耐力下降。检查时,她的嘴唇发红、干燥、鳞状,类似于唇红,同时伴有反甲、结膜苍白和皮肤苍白(图 1)。心电图显示心房颤动,血液检查显示铁为 25 mcg/dl,血红蛋白为 8.3 g/dl,铁蛋白为 4 mcg/ml,网织红细胞和血小板水平正常。她没有服用抗血小板或抗凝药物。内窥镜检查、结肠镜检查和盆腔超声检查结果正常。此外,超声心动图显示射血分数在正常范围内 55%。室间隔和侧环舒张早期峰值速度、三尖瓣反流速度、左心房大小和左心室质量指数等参数均在正常范围内。这名患有心房颤动的患者,N 端脑钠肽前体 (NT-proBNP) 水平为 600 pg/ml,而正常值为 500 pg/ml。诊断为射血分数保留的心力衰竭、心房颤动、口角炎和缺铁性贫血。患者开始接受每日 20 毫克利伐沙班和 20 毫克呋塞米的治疗。
§对于给定的z,a和能量(E n = 0,用于自发裂变),弗雷亚从数据或模型(5高斯)参数化§第二片段化质量和二片碎片质量和电荷中选择质量,并获得二进制裂变,质量和电荷保存§从碎片quality中获得的二元裂变,从碎片Q值中获得f ficsive q值,从而获得了范围Q§§§§§§§tke(a H)Sampled(a h)samppled tke(a h)Sampled sam sampled sam sampled sam samppled; TXE obtained by energy conservation § ‘Spin temperature' sets level of rotational energy, remaining TXE given to intrinsic excitation energy § Intrinsic excitation divided between fragments, based on level densities, then thermal fluctuations introduced to obtain final excitation energy sharing § Thermal fluctuations remove energy from TKE to maintain energy conservation, equivalent to width of TKE distribution § Spin fluctuations (conserving angular动量),引入用于蠕动和弯曲模式§§§前平衡排放和n-n≤20meV§所包含的n-机会裂变,首先将片段推出片段,通过发射中子(weisskopf搅拌频谱),直到剩余的能量较小,直到降低了station suption
应用:• 光镊 — 粒子或粒子聚集体的定向操控• 光通信 — 高带宽信息编码• 量子密码学/计算 — 高维量子信息编码• 灵敏光学检测• 原子、核和粒子物理学的基础科学研究(改进的选择规则、二向色性)
摘要。本文描述了农业机器人,机器人操纵器的类型以及测量其旋转机制时出现的挑战。出现其出现的原因,在此过程中发生的物理和技术现象。分析了其测量所需的不同操作模式的测量换能器,并提出了这些传感器的主要要求。此外,本文提出了传感器,用于控制节能,智能机器人的旋转部分,用于采摘西红柿。这项研究的主要目标之一是衡量和控制用于农业中用于开发现代农业,节省能源和收获优质产品的农业的旋转部分的变化。这项研究的新颖性是机器人操纵器的旋转部分受到产品类型及其大小的控制。
摘要:在许多应用中广泛探索了轨道角动量(OAM)光的空间自由度,包括电信,量子信息和基于光的微型消除。能够分离和区分不同横向空间模式的能力称为模式排序或模式消除,并且在此类应用程序中恢复编码的信息至关重要。理想的D模式分散器应该能够忠实地区分不同的D空间模式,具有最小的损失,并具有D输出和快速响应时间。所有以前的模式分子都依赖于散装的光学元素,例如空间光调节器,如果要与光纤系统集成在一起,它们将无法快速调整,并且会造成其他损失。在这里,我们提出并在实验上证明了我们的最佳知识,这是使用超快动态可重构性的第一种全纤维模式分类的全纤维方法。我们的方案首先分解了OAM模式内纤维线性偏振(LP)模式,然后经过对照法规的重组以确定拓扑电荷,从而正确对OAM模式进行了分类。此外,我们的设置也可用于执行OAM模式的超快路由。这些结果显示了一种新颖的光纤形式的光空间模式排序,可以很容易地用于经典和量子信息处理中的许多新应用。关键字:轨道角动量,光子灯笼,光纤,空间除法■简介
类别选择性是感知脑区组织的基本原则。人类的枕颞皮质细分为优先对面部、身体、人工制品和场景作出反应的区域。然而,观察者需要结合不同类别的物体信息,才能形成对世界的连贯理解。这种多类别信息是如何在大脑中编码的?通过利用 fMRI 和人工神经网络研究男性和女性受试者大脑区域之间的多变量相互作用,我们发现角回与多个类别选择性区域表现出联合统计依赖性。相邻区域对场景和每个其他类别的组合表现出影响,这表明场景提供了结合世界信息的背景。进一步的分析揭示了跨不同类别子集编码信息的皮质区域图,表明多类别信息不是编码在单个集中位置,而是编码在多个不同的大脑区域中。
电喷雾离子束中发射物质的角度分布尚未得到很好的表征,并且会对推进性能和发射器寿命产生负面影响。我们使用飞行时间质谱法对单个电喷雾离子束中发射物质的角度分布与发射电压的关系进行了实验表征。角电流分布表明发射中心轴与发射器尖端中心轴的最大偏差为 10 ◦。离子物质随角度的变化取决于发射电压。单粒子轨迹的模拟表明,离子团簇的碎裂会导致离子产物移近光束中心,而中性产物扩散至 47 ◦,具体取决于碎裂发生的速度。将实验结果与电喷雾发射的多尺度全光束模拟进行了比较,并讨论了未来使用这些模拟来解释角光束行为。