电喷雾离子束中发射物质的角度分布尚未得到很好的表征,并且会对推进性能和发射器寿命产生负面影响。我们使用飞行时间质谱法对单个电喷雾离子束中发射物质的角度分布与发射电压的关系进行了实验表征。角电流分布表明发射中心轴与发射器尖端中心轴的最大偏差为 10 ◦。离子物质随角度的变化取决于发射电压。单粒子轨迹的模拟表明,离子团簇的碎裂会导致离子产物移近光束中心,而中性产物扩散至 47 ◦,具体取决于碎裂发生的速度。将实验结果与电喷雾发射的多尺度全光束模拟进行了比较,并讨论了未来使用这些模拟来解释角光束行为。
Bell态是实现量子信息任务的最基本资源,在量子力学中具有非常独特的地位,而利用轨道角动量(OAM)编码单光子Bell态可以实现高维Hilbert空间,这对于量子信息领域至关重要。本文设计了一种基于Sagnac干涉仪的单光子OAM Bell态演化装置,可以将输入Bell态与输出态一一对应。此外,我们还发展了一种单光子单像素成像(SPI)技术来获取输出态的干涉图像,该技术在提高空间分辨率的同时减少了采集时间。结果表明,通过对比干涉图像的差异可以完全识别单光子OAM Bell态,创新性地将SPI技术应用于单光子OAM Bell态的识别。这表明SPI技术有效促进了基于OAM的量子信息研究,而基于OAM的量子信息又为SPI技术提供了明确的应用场景。
Greenko董事总经理的创始人Anil Chalamalasetty表示:“工业脱碳是全球公司和国家和印度公司的最大机会之一,在采用同样的情况下一直在采用。越来越多的碳自由能的使用不仅会减少印度核心行业的碳足迹,而且还将成为全球市场的关键区别。我们在格林科(Greenko)致力于通过数字化并利用我们的泵送存储解决方案将可再生能源从实时能源转变为可调度和控制的介质。我们与JSP的合作是基于这种理念,并强调了两家公司在使用可再生资源和工业脱碳方面的承诺。我们很高兴与印度最大的钢铁制造公司之一合作,并协助他们进行过渡。”
-glomalin,EPS和生物膜改善了土壤聚集的稳定性并增加了根际中的水分,在干旱1,2下增加了植物生存和生物量,以及在盐胁迫下发芽3。- 细菌生物膜减少了植物组织中砷的摄取和砷的积累,并改善了植物生长4。植物激素的分泌-Rhizobial Gearins促进了Rubisco和低分子量的渗透量产生,增加了干旱耐受性5,并促进了不定的根生长以抵消洪水6。- 细菌细胞分裂素增加了相对的水含量,叶水的潜力以及干旱下的根渗出液的产生。- 末期真菌gberellins调节植物激素,导致盐和干旱胁迫下的营养同化较高。8。- 细菌脱落酸增强了脯氨酸水平以及光合作用和光保护色素,减少了在干旱下损失的植物水9。- 细菌中的ACC-脱氨基酶基因增加了根部伸长和病原体耐药性10。
除了轨道 AM,量子粒子还具有自旋,其起源于相对论,可以将其视为与粒子围绕自身的固有动态旋转有关。自旋与轨道 AM 一样具有离散光谱。电子自旋的 l 值等于 ½,其沿任何给定方向的分量取值 (自旋 ½)。与电子自旋相关的量子态在二维希尔伯特空间中演化,其算符可以表示为恒等算符和三个泡利算符的线性组合,这些算符与三个正交空间方向上的自旋分量成比例。我们使用 Bloch 球面的便捷表示来描述这些算符及其本征态的属性。此表示可用于描述在二维希尔伯特空间中演化的任何系统,例如量子信息中的量子比特。我们将在后续讲座中广泛使用这种表示。
如需查看我们全球办事处的完整列表,请访问 www.excelitas.com/locations © 2021 Excelitas Technologies Corp. 保留所有权利。Excelitas 徽标和设计是 Excelitas Technologies Corp 的注册商标。本文中描述的所有其他不属于 Excelitas Technologies 或其子公司的商标均为其各自所有者的财产。Excelitas 保留随时更改本文件的权利,恕不另行通知,并且不对编辑、图片或印刷错误承担责任。
简介 超小型系列 超小型轴承包括 30 公制系列、33 和 S 英寸系列以及 F 法兰系列。这些轴承可承受径向、推力和组合载荷,这些载荷与它们设计的小轴的承载能力成比例。它们适用于小马力电机、精密仪器、家用电器、电影放映机和类似设备。F 法兰系列具有外部肩部,轴承可安装在通孔外壳中。此系列用于紧凑性至关重要或无法加工外壳肩部的地方。超小型系列中的所有系列都包括屏蔽版本。30 公制系列还提供毛毡密封件、机械密封件和橡胶密封件,而 33 和 S 英寸系列则提供橡胶密封件。超小系列中的一些尺寸由不锈钢制成。
简介 超小型系列 超小型轴承包括 30 公制系列、33 和 S 英寸系列以及 F 法兰系列。这些轴承可承受与它们设计用于的小轴的承载能力成比例的径向、推力和组合载荷。它们适用于小功率电机、精密仪器、家用电器、电影放映机和类似设备。F 法兰系列具有外部肩部,轴承可安装在通孔轴承座中。此系列用于必须紧凑或无法加工轴承座肩部的场合。超小型系列的所有系列都包括屏蔽版本。30 公制系列还提供毛毡密封件、机械密封件和橡胶密封件,而 33 和 S 英寸系列则提供橡胶密封件。超小型系列中的某些尺寸由不锈钢制成。
摘要:所提出的人工智能 (AI) 工具的目的是自动分割全景 X 光片上的下颌磨牙并提取磨牙方向,以预测第三磨牙的萌出潜力。总共使用 838 张全景 X 光片进行网络的训练 (n = 588) 和验证 (n = 250)。具有 ResNet-101 主干的全卷积神经网络联合预测了磨牙分割图和方向线估计值,然后通过对分割轮廓的近中和远中侧进行回归迭代细化。准确度被量化为与人类参考测量值相比的正确角度 (具有预定义的误差间隔) 的分数。使用 Bland-Altman 图直观地评估网络和参考测量值之间的性能差异。自动磨牙分割的定量分析导致平均 IoU 约为 90%。第一和第二磨牙的平均 Hausdor ffi 距离最小。网络角度测量的准确度达到 79.7% [ − 2.5 ◦ ; 2.5 ◦ ] 和 98.1% [ − 5 ◦ ; 5 ◦ ],同时临床上显著减少了 53% 以上的用户时间。总之,本研究验证了一种独特的新型 AI 驱动工具,可快速、准确、一致地自动测量全景 X 光片上的磨牙角度。为牙科医生提供精确的 AI 工具将促进和优化牙科护理,并协同提高诊断准确性。
已开发出一种通过测量散射光的角度分布来研究表面粗糙度的仪器。在我们的仪器中,氦氖激光器发出的光束以可能变化的入射角照射表面。散射光分布由位于半圆形轭架中的 87 个光纤传感器阵列检测,该半圆形轭架可绕其轴旋转,以便可以在整个半球上采样散射辐射。检测器阵列的输出在实验室计算机中数字化、存储和分析。最初的实验集中在高度二维的不锈钢表面测量上,其产生的散射分布位于入射平面内。通过将角度散射数据与由触针式仪器测量的数字化粗糙度轮廓计算出的理论角度散射分布进行比较来分析结果。理论分布是通过将粗糙度分布代入 Beckmann 和 Spizzichino 开发的电磁散射积分方程的运算数来计算的。这种方法直接测试了基本光学理论的准确性。