Unit-1: Crystal Structure and Reciprocal lattice: Review of different kinds of matter-nature of bonding-Crystal structure – Bravais lattice – Unit cell, Wigner -Seitz cell- Index system for crystal planes – miller planes –point groups– space groups–screw axes–glide planes- concept of Reciprocal lattice – Brillouin zone of SC, BCC and FCC and its properties in reciprocal lattice – Fourier analysis of the basis – geometrical structure factor - interpretation of Bragg‟s equation Unit-2: Phonon Physics: Elastic Vibrations of one dimensional mono atomic lattice – vibrations of one-dimensional diatomic lattice – phonons momentum of phonons – phonon heat capacity and density of states – Debye and Einstein model of density of states – Anharmonic crystal interaction - thermal扩展 - 导热率 - UMKLAPP过程单元3:自由电子理论:Drude理论 - 一维盒中的自由电子气体 - 三维气体中的自由电子 - 状态的密度 - FD统计(无衍生) - k-空间和游离电子气体和自由电子热量 - 电子特定热量 - 电子和热电导率 - 电导率 - Wiedeman Franz Life
为了控制两级量子系统的状态(例如离子量子轴的自旋状态),光学频率梳子通过从一个梳子牙齿中刺激的吸收并刺激到另一个梳子牙齿中的刺激吸收了两光子的拉曼过程。如果两级能量差距是激光重复速率的整数倍数,则谐振拉比振荡会激发。当后者的频率接近量子线的过渡速度时,Bloch球体上可能存在强烈的静脉锁定循环,该循环可能会产生一个非常狭窄的,相同间隔的光谱线的亚谐波系列。如果将光频梳的重复速率适当地调整为后者(最多达到平均载体包络频率),则应到达两级系统的高度谐振动力学状态,在任何一对相邻的梳子齿中,都会发生拉曼刺激的吸收和发射过程的情况。
pentadiamond是一种由杂化SP 2和SP 3原子组成的碳同素同质量,该原子被预测是稳定且可合成的。在这项工作中,我们采用第一个原理计算来探索五角大陆的电源结构,光学特征,机械响应和晶格导热率,并与钻石中的相应特性进行了直接比较。HSE06密度功能可预测五角星和钻石的间接电子带隙,其值分别为3.58 eV和5.27 eV。光学特征的结果表明,五角星在中部紫外线区域的吸收量很大,其中钻石没有吸收光,与较小的五角星的带隙一致。发现五角星的弹性模量和拉伸强度分别为496 GPA和60 GPA,大大低于钻石的相应值。通过求解Boltzmann的传输方程来检查晶格的热导率,并通过通过最新的机器学习的原子间电位评估了Anharmonic Force常数。我们预测,五角星原子的热电导率为427 w/m-k,不到钻石相应数量的三分之一。我们的结果提供了五角星原子的内在特性的有用视觉,但与钻石相比,它在机械强度和热传导方面的某些缺点。
设计及其应用,2,4 其中仅需最少的时间和资源即可快速评估 k 是关键。有很多可用的方法来评估 k 。基于第一性原理的非谐晶格动力学 (ALD) 是过去几年中广泛采用的方法。5 然而,使用大型超胞进行的太多力计算虽然可以部分重建,但非常耗时耗资源,6 这限制了其在高通量计算预测 k 中的实际应用。或者,使用经验模型评估 k 是一种更有效、更可行(计算成本更低)的方法,例如 Debye-Callaway 模型、7-9 Slack 模型、10 等。特别是,Slack 模型已广泛应用于评估许多材料的 k,11-13 显示出快速预测 k 和洞察热传输的潜在能力。14-16
我们提出了一项有关通过任意极化光照射增强双层石墨烯(BLG)的热电(TE)性能的综合研究,重点是具有锯齿形边缘的AA和AB堆放的配置。利用紧密结合理论和密度功能理论(DFT)的结合,我们系统地分析了光照射对电子和语音传输特性的影响。光照射改变了电子跳跃参数,创造了不对称的传输函数,从而显着增加了Seebeck系数,从而增强了功绩(FOM)的整体形象。对于语音贡献,DFT计算表明,与AA相比,ABSTACKSTACKSTACKENSTACK STACKENS呈现较低的晶格导热率,这归因于增强的Anharmonic散射和声子组速度。组合分析表明,在两种堆叠类型中,FOM都超出了统一性,在辐射引起的间隙附近有了显着改善。此外,我们探讨了FOM对系统尺寸和温度的依赖性,这表明光辐射的BLG对有效的热电学转换和废热恢复具有很大的希望。我们的结果显示在广泛的辐照参数中的响应良好。这些发现提供了通过光引起的修改为高级TE应用优化BLG的关键见解。
n最近几十年,我们更深入的量子系统地位使我们进入了控制,进行和工程的时代。用于捕获,激光冷却和操纵超低原子,离子和分子的技术已为原子和分子系统开发。此外,还创建了具有各种能级结构的人造原子,尺寸从几个原子到介质尺度。介质人工原子的主要例子是一个超导量子,其核心是约瑟夫森连接。直觉上,Jo Sephson结的功能充当非线性电感器,创建了一个无谐的能量景观,其中最低量化的能级形成量子。超导码头的中渗透性质促进了其在商业基板上的光刻制造,类似于定义Inte Grated电路的定义方式。制造中的这种灵活性提供了巨大的设计,允许量子信息
从熔体中获得了 1,3-二乙酰芘的一种新同质异形体,并使用单晶 X 射线衍射、稳态紫外可见光谱和周期性密度泛函理论计算对其进行了彻底表征。实验研究涵盖的温度范围从 90 至 390 K,压力范围从大气压至 4.08 GPa。根据我们之前提出的方法,在金刚石压砧中对样品进行最佳放置,可确保单斜样品在 0.8 A ˚ 以下的数据覆盖率超过 80%。高压晶体结构的无约束 Hirshfeld 原子细化成功,并且观察到羰基氧原子的非谐波行为。与之前表征的多晶型物不同,2 AP- 的结构基于反向平行 2 AP 分子的无限 -堆叠。2 AP- 表现出压电变色和压电氟变色,它们与 -堆叠内的晶面间距离变化直接相关。弱分子间相互作用的重要性体现在 C—HO 相互作用方向的负热膨胀系数高达 55.8 (57) MK 1。
摘要:根据 Nielsen 及其合作者的开创性工作,合适算子空间的几何实现中最小测地线的长度提供了操作量子复杂性的度量。与基于将所需操作构建为乘积所需的最少门数的原始复杂性概念相比,这种几何方法相当于一个更具体和可计算的定义,但在具有高维希尔伯特空间的系统中,它的评估并不简单。通过考虑与由系统中少量相关算子生成的合适有限维群相关的几何,可以更轻松地评估几何公式。通过这种方式,该方法特别应用于谐振子,这也是本文感兴趣的。然而,群论中微妙且以前未被认识到的问题可能会导致无法预见的复杂情况,从而促使人们提出一种新的公式,该公式在大多数所需步骤中仍处于底层李代数的水平。因此,可以在低维环境中发现关于复杂性的新见解,并有可能系统地扩展到更高维度以及相互作用。具体示例包括与谐振子、倒谐振子和耦合谐振子相关的各种目标幺正算子的量子复杂性。该方法的普遍性通过应用于具有三次项的非谐振子来证明。
离子阱系统是量子信息处理的主要平台,但目前仅限于一维和二维阵列,这限制了它们的可扩展性和应用范围。本文,我们提出了一种克服这一限制的方法,通过证明 Penning 阱可用于实现非常干净的双层晶体,其中数百个离子自组织成两个明确定义的层。这些双层晶体是通过加入非谐波捕获势来实现的,这在现有技术下很容易实现。我们研究了该系统的正常模式,发现了与单平面晶体模式相比的显著差异。双层几何形状和正常模式的独特性质开辟了新的机会——特别是在量子传感和量子模拟方面——这在单平面晶体中并不简单。此外,我们说明了可以扩展这里提出的想法来实现具有两层以上的多层晶体。我们的工作通过有效利用所有三个空间维度来增加捕获离子系统的维数,并为利用多层三维捕获离子晶体进行新一代量子信息处理实验奠定了基础。
在能量材料的震动到淘汰过渡期间,分子间和分子内振动的耦合在启动化学中起着至关重要的作用。在本文中,我们使用宽带,超级空军红外瞬时吸收光谱光谱光谱镜头报告了固体能量材料1,3,5-三硝基羟基1,3,5-三嗪(RDX)的固体能量材料的次秒至亚纳秒振动能量转移(VET)动力学。实验表明,在三个不同的时间尺度上发生兽医:次秒,5 ps和200 ps。在中红外的所有探测模式下,信号的超快出现表明固体中所有振动的强烈无谐耦合,而长期寿命的演化表明兽医是不完整的,因此即使在百比次时时间表上也无法达到热平衡。密度功能理论和经典分子动力学模拟为实验观测提供了有价值的见解,揭示了高频振动的初始VET动力学的压缩 - 不敏感的时间尺度,以及在压缩下对低频声子模式的急剧扩展的放松时间。最长动力学的模式选择性表明N – N和轴向No 2拉伸模式与长寿,激发的声子浴的耦合。