理解海绵状C-F衍生链的电化学性能是用于锂离子电池的有效阴离子捕获复合基质。Aadheeshwaran Saminathan,Devadharshini Amudhasagar,Soundarrajan Elumalai,Prettencia Leonard Joseph,Raghu Subashandrabose,Sankaranranaranarayanan krishnarayanan Krishnasamy Acs Acs可持续化学和工程学。
可充电金属阳极电池是有希望的锂离子电池开发。然而,金属阳极与电解质的高反应性导致形成固体 - 电解质相间(SEI)。电解质设计是控制金属阳极电池中SEI组成的关键手柄,但是我们对电解质(特别是阳离子的第一个协调球)的理解是有限的。在本文中,对离子溶剂化和络合技术的研究将其带入电池电解质的背景下。在一组偏光溶剂中,总结了文献中的相关数据,并补充了溶液(δsol H)的焓(δsol H)和转移(δTrh)测量的焓(δTrh)测量。通过考虑溶剂和阴离子特性,尤其是溶剂捐赠和阴离子的大小,观察到的趋势是合理化的。使用一组示例电解质来实现LI +配位球,等温滴定量热法(ITC)和电位滴定(PT),以探测Li +协调复杂的较弱的溶剂的热力学演化,该溶剂是由弱溶剂的较弱的溶剂所取代的,该溶剂是由强度溶剂替代的。拉曼光谱法用于确认溶剂位移是按预期发生的,并且研究了阴离子对ITC测量的影响。开发了一个统计结合模型,该模型符合实验滴定数据,以提取Gibbs自由能(ΔG),焓(ΔH)和熵(ΔS)的平均变化。使用此方法对EC的优先溶剂化趋势进行了量化的EC:DMC和EC:PC电解质,并与其他工人观察到的偏好进行了比较。本论文为将来的有关更复杂的电池电解质配位环境的热力学研究及其与SEI组成的联系提供了一个框架。
糖尿病性酮症酸中毒(DKA)是威胁生命的医疗紧急情况,需要立即评估和治疗。它仍然是糖尿病的重要并发症,在全球范围内正在增加。这是一种内分泌并发症,涉及高血糖,阴离子间隙代谢性酸中毒和酮症。It is characterized by hyperglycaemia with glucose is greater than 11 mmol/l (200 mg/dl), capillary/venous pH is less than 7.3, bicarbonate (HCO 3 –) is less than 15 mEq/l, serum anion gap is greater than 16 mmol/l, moderate to severe dehydration is seen and creatinine ratio is increased, and ketones (ketonemia and存在酮尿≥3mmol/L)。它发生在1型糖尿病(T1D)和2型糖尿病(T2D)的患者中;以及早期诊断,监测和治疗对于患者的福利是必需的。DKA的治疗涉及体积膨胀,胰岛素置换和预防低钾血症。DKA可以通过早期识别和开始胰岛素治疗来预防。在这里试图详细讨论DKA的各个方面。
euglycemic糖尿病性酮症酸中毒(DKA)是一种罕见但在临床上很重要的表现,可以导致糖尿病患者的发病率和死亡率显着。它与多种病因相关,包括葡萄糖共晶2(SGLT2)抑制剂的使用。此病例报告详细介绍了一名28岁男性患者的介绍,该患者最近被诊断出患有心肌梗死(NSTEMI)状态后,冠状动脉干预后(PCI)左右前降(LAD)和2型糖尿病(LAD)和2型糖尿病(T2DM)(T2DM)(T2DM)(T2DM)(T2DM)(T2DM),并在新的医疗方案上排出了SGIND 2,并在新的医疗方案上排出。五天后患者出现呼吸困难,恶心和呕吐。在初步评估时,他患有心动过速和高血压。实验室的工作显示高钾血症,代谢阴离子酸中毒以及尿液中酮和葡萄糖的存在,从而诊断出尤古血糖DKA。该患者是静脉内(IV)胰岛素,碳酸氢盐和D5½正常盐水(NS)的开始,需要连续五天治疗阴离子间隙才能闭合。
1. DKA(pH <7.20、总 CO2 <18、BHB>3、阴离子间隙 >18)2. 高渗性非酮症昏迷(或 AMS)3. 诱发因素不易治疗 4. 生命体征不稳定 5. 社会问题 – 无法进行充分的门诊治疗 6. 需要安置难处理的患者 7. SSU 提供者职权范围内的任何情况导致患者不适合接受 SSU
图1:(a)表现出负T li的实验探测系统(来自Elabd的工作47的盐掺杂S-B- [VBMIM] [TFSI])和阳性T LI(来自Forsyth的工作10的盐掺杂[PDADMA] [FSI] 10); (b)在我们的模拟中探测了带有阴离子TFSI-和锂离子阴离子的PVBMIM和PB-VIM系统的化学细节。
可持续能源产生的份额不断增长,并将继续导致效果储能系统的重要性显着增加,因为它变得越来越有必要弥补能够在电网中弥补可再生能源的波动。1,2在大量可能的技术中,一种有希望的电化学能量系统是氧化还原流量电池(RFB),例如全泡氧化还原流量电池(AVRFB)。3,4,在两个半细胞中,不同的氧化态种类用作氧化还原对。这比RFB具有一个显着的优势,而RFB在每个半细胞中采用了不同的金属氧化还原对,因为通过膜对钒物种的交叉污染不会导致AVRFBS的永久损失,从而导致系统的寿命较短。5,6 AVRFB的原理如图所示 1。 电池的两个半细胞通过质子交换膜(PEM)隔开,该质子交换膜(PEM)促进了通过质子传递的电荷平衡,而电气导体可确保电子的流动。 应该注意的是,也可以使用阴离子交换膜;但是,PEM是最常用的膜。 7–9因此,阴离子交换膜将5,6 AVRFB的原理如图1。电池的两个半细胞通过质子交换膜(PEM)隔开,该质子交换膜(PEM)促进了通过质子传递的电荷平衡,而电气导体可确保电子的流动。应该注意的是,也可以使用阴离子交换膜;但是,PEM是最常用的膜。7–9因此,阴离子交换膜将
Nazeri,Gholam Hossein; Mastour,Ramin* +; Fayaznia,穆罕默德; Parviz高级材料研究中心Keyghobadi,P.O。 框16765-3574 Tehran,I.R。 伊朗摘要:使用-30°C的硫酸和硝酸混合物进行硫氨酸钾的硝化。 以硫酸与硝酸的摩尔比(1:3.5)优化了反应时间。 通过将钾变成硫铵的钾产量差异。 发现产品的产率和纯度都从磺胺钾开始。 关键词:硫钾钾,二硝基酸,硝酸,二硝基铵,二硝基钾。 引言Dinitramide Salts是一种独特的氮气氧,于1988年首次发现[1,2]。 二硝酰胺盐具有较高的氧气含量,并在不同的柜台上制备,包括铯,铵和肼盐。 二硝基胺阴离子的弹药盐(NH 4 N(NO 2)2)或ADN比硝酸铵具有热敏感性和更敏感的敏感性,但比相关的相关的n-n-n-n-dinitro衍生物(如谷氨酸氨基酸铵(如杏仁粉)(如杏仁粉(r-n(r-n(r-n(r-n(r-n(r-n no 2),2)2)),它比相关的n-n-n-n-dinitro衍生物更稳定。 二硝酸根阴离子与各种阳离子形成富含氧气的盐的能力使其成为固体推进剂中能量氧化剂发展的有前途的候选者。 该化合物的潜在实际用途是替代高氯酸铵Nazeri,Gholam Hossein; Mastour,Ramin* +; Fayaznia,穆罕默德; Parviz高级材料研究中心Keyghobadi,P.O。框16765-3574 Tehran,I.R。 伊朗摘要:使用-30°C的硫酸和硝酸混合物进行硫氨酸钾的硝化。 以硫酸与硝酸的摩尔比(1:3.5)优化了反应时间。 通过将钾变成硫铵的钾产量差异。 发现产品的产率和纯度都从磺胺钾开始。 关键词:硫钾钾,二硝基酸,硝酸,二硝基铵,二硝基钾。 引言Dinitramide Salts是一种独特的氮气氧,于1988年首次发现[1,2]。 二硝酰胺盐具有较高的氧气含量,并在不同的柜台上制备,包括铯,铵和肼盐。 二硝基胺阴离子的弹药盐(NH 4 N(NO 2)2)或ADN比硝酸铵具有热敏感性和更敏感的敏感性,但比相关的相关的n-n-n-n-dinitro衍生物(如谷氨酸氨基酸铵(如杏仁粉)(如杏仁粉(r-n(r-n(r-n(r-n(r-n(r-n no 2),2)2)),它比相关的n-n-n-n-dinitro衍生物更稳定。 二硝酸根阴离子与各种阳离子形成富含氧气的盐的能力使其成为固体推进剂中能量氧化剂发展的有前途的候选者。 该化合物的潜在实际用途是替代高氯酸铵框16765-3574 Tehran,I.R。伊朗摘要:使用-30°C的硫酸和硝酸混合物进行硫氨酸钾的硝化。以硫酸与硝酸的摩尔比(1:3.5)优化了反应时间。通过将钾变成硫铵的钾产量差异。发现产品的产率和纯度都从磺胺钾开始。关键词:硫钾钾,二硝基酸,硝酸,二硝基铵,二硝基钾。引言Dinitramide Salts是一种独特的氮气氧,于1988年首次发现[1,2]。二硝酰胺盐具有较高的氧气含量,并在不同的柜台上制备,包括铯,铵和肼盐。二硝基胺阴离子的弹药盐(NH 4 N(NO 2)2)或ADN比硝酸铵具有热敏感性和更敏感的敏感性,但比相关的相关的n-n-n-n-dinitro衍生物(如谷氨酸氨基酸铵(如杏仁粉)(如杏仁粉(r-n(r-n(r-n(r-n(r-n(r-n no 2),2)2)),它比相关的n-n-n-n-dinitro衍生物更稳定。二硝酸根阴离子与各种阳离子形成富含氧气的盐的能力使其成为固体推进剂中能量氧化剂发展的有前途的候选者。该化合物的潜在实际用途是替代高氯酸铵
p 2.1使用聚合物固定的抗生物源膜的抗双源膜的制造和表征,使用聚合物J. kim - 韩国Kyungpook国立大学,韩国。118 p 2.2再生聚碳酸酯作为通过nips D. Breite制备膜制备的原始材料 - 莱布尼兹·伊斯蒂特·弗洛伊尔·奥伯夫弗罗夫·奥伯夫弗罗夫·乔chenmodi-fürfulächenmodi-fizierung(iom),德国。。。。。。。。。。。。。。。。。。119 p 2.3使用陶瓷膜触发器S. trepte-Fraunhofer Ikts,德国。。。。。。。。121 p 2.4交联对聚苯乙烯 - 二乙烯基苯基氯化物共聚物的性质的影响,基于燃料电池的Z.saraç-Gebze技术大学,化学工程,Türkiye。。。。。。。。。。。。。。。。。。。。。123 p 2.5季分化剂对多硫酮/mxene纳米复合物的离子构成性的影响。 Taşdelen-Yücedağ-吉布兹技术大学,化学工程,Türkiye。。。。。。。。。。。。。。125 p 2.6使用块共聚物D. Aydin -SelçukUniversity,Türkiye的受控多孔膜的形成和表征。。。。。。。。127 p 2.7将甲基蓝色染料转运到基于石墨烯的聚合物膜I. Gubbuk-SelçukUniversity,Türkiye。。。。。。。。。129