文章标题:药物重新培训中的机器学习和人工智能 - 挑战和观点作者:Ezequiel Anokian [1],Judith Bernett [2],Adrian Freeman [3],Markus List [2],LucíaPrietoSantamaría[4],Auntorrarhman Tanoli [4] Bonnin [1]分支机构:发现与转化科学(DTS),Clarivate Analytics,巴塞罗那(西班牙)[1],《系统生物学数据科学》,慕尼黑技术大学,慕尼黑技术大学,德国(德国)[2] Biopharmaceuticals R&D,阿斯利康,剑桥(英国)[3],EscuelaTécnicasuperior de gegenierossismorlosinformáticos,Madrid大学(西班牙)大学(西班牙) (FIMM),Hilife,Hilife,赫尔辛基大学(芬兰),Bioicawtech,赫尔辛基(芬兰)[5] [5] Orcid ID:0000-0003-0694-1867 [1] [1],0000-0001-501-5812-8013 [2] 0000-0002-0941-4168 [2], 0000-0003-1545-3515 [4], 0000-0003-2435-9862 [5], 0000-0001-5159-2518 [1] Contact e-mail: Sarah.bonnin@clarivate.com Journal: Drugrxiv review statement:手稿目前正在审查中,应由酌处权对待。手稿提交日期:2024年3月12日关键字:机器学习,神经网络,人工智能,药物repurost
我们提出了一种新颖的视频异常检测方法:我们将从视频中提取的特征向量视为具有固定分布的随机变量的重新释放,并用神经网络对此分布进行建模。这使我们能够通过阈值估计估计测试视频的可能性并检测视频异常。我们使用DE-NONISE分数匹配的修改来训练视频异常检测器,该方法将训练数据注射噪声以促进建模其分布。为了消除液体高参数的选择,我们对噪声噪声级别的噪声特征的分布进行了建模,并引入了常规化器,该定期用器倾向于将模型与不同级别的噪声保持一致。在测试时,我们将多个噪声尺度的异常指示与高斯混合模型相结合。运行我们的视频异常检测器会引起最小的延迟,因为推理需要仅提取特征并通过浅神经网络和高斯混合模型将其前向传播。我们在五个流行的视频异常检测台上的典范表明了以对象为中心和以框架为中心的设置中的最先进的性能。
X射线照相成像方案集中在特定的身体区域上,因此产生了相似性的图像并产生跨染料的复发性解剖结构。为了利用这些结构化信息,我们建议使用空间感知的记忆队列在射线照相图像(缩写为squid)中进行镶嵌和检测异常。我们表明,鱿鱼可以将无网状的解剖结构分类为复发模式。在推论中,它可以识别图像中的异常(未见/修改模式)。squid在无监督的异常检测中超过了13种最先进的方法,在两个胸部X射线基准数据集中至少在曲线下测量的两个胸部X射线基准数据集(AUC)。此外,我们还制定了一个新的数据集(数字解剖),该数据集综合了胸部解剖结构的空间相关性和一致的形状。我们希望数字解剖学能够促使异常检测方法的开发,评估和解释性。
当前的视频异常检测(VAD)方法本质上仅限于封闭设置的设置,并且可能在开放世界应用程序中遇到困难,在培训期间,测试数据中可能存在异常类别。最近的一些研究试图解决更现实的开放式VAD,该研究旨在解散视为异常和正常视频的看不见异常。但是,尽管这种能力对于构建更明智的视频监视系统至关重要,但这种设置着重于预测框架异常得分,没有识别异常类别的能力。本文进一步迈出了一步,并探讨了开放词汇视频异常检测(OVVAD),我们的目的是利用预训练的大型模型来检测和cate-可见和看不见的异常。为此,我们提出了一个模型,该模型将OVVAD分解为两个相互构成的任务 - 类不足的检测和特定于类的分类 - 并共同优化了这两个任务。特别是,我们设计了一个语义知识注入模块,以从大语言模型中引入语义知识以进行检测任务,并设计一种新型的异常合成模块,以在大型视觉生成模型的帮助下生成伪异常视频,以实现分类任务。这些语义知识和综合异常大大扩展了我们模型在检测和分类各种可见和看不见的异常方面的能力。对三个广泛使用的基准测试的实验实验实现了我们的模型在OVVAD任务上实现了最新的性能。
由于带注释的样本稀缺,病理性脑损伤在图像数据中的复杂表现对监督检测方法提出了挑战。为了克服这个困难,我们将重点转移到无监督异常检测。在这项工作中,我们专门使用健康数据训练所提出的模型,以识别测试期间未见的异常。这项研究需要调查基于三元组的变分自动编码器,以同时学习健康脑数据的分布和去噪能力。重要的是,我们纠正了先前基于投影的方法中固有的一个误解,该误解依赖于这样的假设:图像内的健康区域在重建输出中将保持不变。这无意中暗示了病变图像和无病变图像在潜在空间表示上存在相当大的相似性。然而,这种假设可能并不成立,特别是由于病变区域强度对投影过程的潜在重大影响,特别是对于具有单一信息瓶颈的自动编码器。为了克服这个限制,我们将度量学习与潜在采样分离。这种方法确保病变和无病变输入图像都投影到相同的分布中,特别是无病变投影。此外,我们引入了一个语义引导的门控交叉跳过模块来增强空间细节检索,同时抑制异常,利用解码器更深层中存在的健壮健康大脑表示语义。我们还发现,将结构相似性指数测量作为额外的训练目标可以增强所提模型的异常检测能力。
大规模视觉语言预训练模型的最新进展已在自然图像领域中的零样本/少样本异常检测方面取得了重大进展。然而,自然图像和医学图像之间巨大的领域差异限制了这些方法在医学异常检测中的有效性。本文介绍了一种新颖的轻量级多级自适应和比较框架,以重新利用 CLIP 模型进行医学异常检测。我们的方法将多个残差适配器集成到预训练的视觉编码器中,从而实现不同级别视觉特征的逐步增强。这种多级自适应由多级、逐像素的视觉语言特征对齐损失函数引导,将模型的重点从自然图像中的对象语义重新校准到医学图像中的异常识别。调整后的特征在各种医学数据类型中表现出更好的泛化能力,即使在模型在训练期间遇到看不见的医学模态和解剖区域的零样本场景中也是如此。我们在医学异常检测基准上进行的实验表明,我们的方法明显优于当前最先进的模型,在零样本和少样本设置下,异常分类的平均 AUC 改进分别为 6.24% 和 7.33%,异常分割的平均 AUC 改进分别为 2.03% 和 2.37%。源代码可从以下网址获取:https://github.com/MediaBrain-SJTU/MVFA-AD
异常定位,目的是将图像中的异常区域分割出来,这是由于种类繁多的异常类型而具有挑战性的。现有方法通常是通过将整个图像作为整体而却很少付出的努力来学习局部分布来训练深层模型,这对于这项Pixel Prescerise任务至关重要。在这项工作中,我们提出了一种基于补丁的方法,可以适当考虑全球和本地信息。更具体地说,我们采用本地网络和全球网络分别从任何单个贴片及其周围来提取特征。全球网络经过训练,其目的是模仿本地功能,以便我们可以从上下文中轻松检测其功能不匹配时。我们进一步引入了不一致的异常检测(IAD)头和一个失真异常检测(DAD)头,以足够的时间发现全球和局部特征之间的差异。源自多头设计的评分函数有助于高精度异常定位。在几个现实世界数据集上进行了广泛的实验表明,我们的方法优于最大的竞争对手,而竞争对手的差距足够大。
●社会组织的注册,促进(i)刺激非法行为实践的活动; (ii)煽动与性别,种族,宗教,信仰,年龄或任何其他条件有关的歧视行为的做法; (iii)对健康和心理平衡诱发或诱发危险,风险或有害做法; (iv)违反通讯的机密性; (v)Veicaculate,煽动或刺激恋童癖; (vi)有或鼓励他们的链条剥削童工,或者使劳动力类似于奴隶劳动; (vii)包含受版权或工业财产法保护的对象或标记,并包含第三方的图像或短语,其中参与的倡议没有适当的使用授权。
将氧等离子体处理的石英晶片切割成1cm2用于PPMS(霍尔、磁阻、温变电导)和XPS测量中的所有电学测量。由于尺寸要求,将氧等离子体处理的ITO基板切割成0.5 cm * 0.5 cm用于PES和IPES测量,将氧等离子体处理的石英晶片切割成0.6 cm * 0.4 cm用于高场霍尔测量。所有基板在使用前分别在丙酮和异丙醇中通过超声波清洗工艺清洗10分钟。将C 14 -PBTTT溶液以3000 r/min的转速旋涂到相应的基板上,形成厚度约25nm的PBTTT薄膜,然后将获得的薄膜在150°C下退火10分钟,让其冷却至室温。将Cytop溶液旋涂到所有掺杂后的电学测量薄膜上进行封装,再通过光刻和氧离子刻蚀实现霍尔棒结构的图形化。掺杂工艺