摘要:锂离子电池(LIBS)已成为可移植设备和运输设备的首选电池系统,因为它们的特定能量很高,良好的循环效果,低自我放电以及缺乏记忆效应。但是,过度低的环境温度会严重影响LIB的性能,在-40〜-60°C下几乎无法排放。有许多因素影响Libs的低温性能,最重要的是电极材料之一。因此,迫切需要开发电极材料或修改现有材料以获得出色的低温LIB性能。基于碳的阳极是在LIBS中使用的候选者。近年来,已经发现,石墨阳极中锂离子的扩散系数在低温下更明显地降低,这是限制其低温性能的重要因素。但是,无定形碳材料的结构很复杂。它们具有良好的离子扩散特性,晶粒尺寸,特定的表面积,层间距,结构缺陷,表面官能团和掺杂元件可能会对其低温性能产生更大的影响。在这项工作中,通过从电子调制和结构工程的角度修改基于碳的材料来实现LIB的低温性能。
本研究由美国能源部硅谷联盟项目下的车辆技术办公室资助,由 Brian Cunningham 指导,Anthony Burrell 管理。本研究部分由可持续能源联盟有限责任公司 (Alliance for Sustainable Energy, LLC) 开展,该公司是美国能源部 (DOE) 国家可再生能源实验室的管理者和运营商,合同编号为 DE-AC36-08GO28308。本文表达的观点不一定代表美国能源部或美国政府的观点。美国政府保留;出版商接受本文发表即承认美国政府保留非独占、已付费、不可撤销的全球许可,可出于美国政府目的出版或复制本作品的已出版形式,或允许他人这样做。
摘要:水系锌电池(AZB)是一种很有前途的储能技术,因为它们具有高理论容量、低氧化还原电位和安全性。然而,金属锌表面的枝晶生长和寄生反应会导致严重的不稳定性。本文我们报道了一种获得超细锌纳米颗粒阳极的新方法,该方法通过使用乙二醇单甲醚(EGME)分子来操纵锌的成核和生长过程。结果表明,EGME 与 Zn 2+ 复合以适度增加成核的驱动力,并吸附在锌表面以通过细化晶粒来防止 H- 腐蚀和树枝状突起。因此,纳米级阳极具有高库仑效率(约 99.5%)、长循环寿命(超过 366 天和 8800 次循环)以及与全电池中最先进的正极(ZnVO 和 AC)出色的兼容性。这项研究为水性金属离子电池的界面工程提供了一种新途径,对 AZB 的商业化未来具有重要意义。关键词:水性锌电池、锌金属阳极、超细纳米颗粒、枝晶生长、寄生反应
混合离子电容器 (HIC) 是一种快速发展的技术,它结合了电池和 SC 的最佳特性,可在长时间内以高速率产生巨大的能量密度。根据之前的研究,这些 HIC 可以提供 60 到 200 W h kg 1 之间的能量(考虑到活性材料的质量),优于传统的 SC,它们的主要强度在 200 到 20 000 W kg 1 之间,大大高于电池。20,21 与锂(0.0017%)相比,钠(Na,2.6%)和钾(K,2.1%)在地壳中储量丰富,使它们成为促进电池发展的有希望的替代品。22,23 此外,K 和 Na 都属于元素周期表中锂之后的同一组,表现出相似的物理化学性质。因此,对 Na + /K + 存储技术的研究正在获得发展势头,为成功的可再生能源存储系统商业化铺平了道路。 24 K + 存储装置之所以受到关注,是因为它们的工作电压比 Na 离子存储装置高,电解质中的离子电导率也更出色。例如,K/K + 氧化还原对的电位为 2.93 V(相对于标准氢电极 (SHE)),低于 Na/Na +
锂离子电池(LIB)的大多数高容量阳极材料需要碳质基质。在这种情况下,一种有希望的材料是氧化石墨烯(RGO)。在此,我们介绍了RGO对其物理化学特性(例如结晶度,特定表面积),电导率和电化学静态/划界行为等不同还原度的影响。发现在惰性和减少气氛下进行的热处理将RGO的远距离顺序提高到700°C的温度。在1000°C左右的温度下,结晶度降低。随着氧含量的降低,可以观察到周期1期间不可逆能力的线性降低,并且电导率的显着增加。尽管表面积增加,但可以观察到不可逆转的能力下降,这表明氧含量对容量损失的影响越明显。因此,由于降低热量,可逆能力不断增加至碳含量为84.4%。与期望相反,能力随着进一步的降低而降低。这可以通过将可逆的官能团的丧失和远程顺序降低,这可以解释,如DQ/DU分析与XRD分析结合得出的那样。©2023作者。由IOP Publishing Limited代表电化学学会出版。[doi:10.1149/1945-7111/ace70a]这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。
韩国陶瓷工程与技术研究所,金朱52851,大韩民国B能源工程系,汉阳大学,222 WANGSIMNI-RO,SEONGDONG,SEOLN-GU,SEOUL 04763,SEOUL 04763,韩国能源与化学工程共和国共和国共和国,ULSAN 449919191919191919. 16499年,大韩民国e工业化学系,普金国立大学,45 Yongso-ro,NAM-GU,Busan 48513,大韩民国第48513号,Pusan National University,Busan University,Busan 46241,46241,韩国韩国Griorea Inspector office and kyungpook National University,Kyungpook National University,Daegu 46241 Gachon University,Seongnam-Si,Gyonggi-Do 13120,大韩民国韩国陶瓷工程与技术研究所,金朱52851,大韩民国B能源工程系,汉阳大学,222 WANGSIMNI-RO,SEONGDONG,SEOLN-GU,SEOUL 04763,SEOUL 04763,韩国能源与化学工程共和国共和国共和国,ULSAN 449919191919191919. 16499年,大韩民国e工业化学系,普金国立大学,45 Yongso-ro,NAM-GU,Busan 48513,大韩民国第48513号,Pusan National University,Busan University,Busan 46241,46241,韩国韩国Griorea Inspector office and kyungpook National University,Kyungpook National University,Daegu 46241 Gachon University,Seongnam-Si,Gyonggi-Do 13120,大韩民国
对未来的网格级存储应用有吸引力。金属Zn作为AZB的理想阳极,具有最高的理论能力(5851 mAh ml -1)。它也是无毒的,不可易变的,丰富的,并且具有良好的电导率和水稳定性。[1-5]然而,循环过程中的召开金属锌阳极遭受严重的树突形成,造成了严重的问题,例如较差的可逆性,电压滞后,寄生反应增加,缩短了电池损坏造成的电池故障以及其他问题。[1,3,6]这些树突状结构,稀有的针或非平面血小板沉积物,在电极的不规则或有缺陷区域偏爱形成,在该区域中,局部电流密度最高,初始核核事件最有可能[7],并且在高电流和coscAcs cocclities和coscling cancling cancling and coscling and cancliesitions [7]。[8,9]控制和抑制树突状增长的策略围绕着操纵电力,通常是通过包含添加剂[10-15],或通过将电极设计到高面积的海绵中[16-18],[16-18]或保护表面涂料,[19]以供应,[19]以抑制构建dendrite。
这项工作是由美国能源公司联盟(Alliance for Sustainable Energy,LLC)经营的国家可再生能源实验室为美国能源部(DOE)根据合同编号DE-AC36-08GO28308。这项研究得到了美国能源部的车辆技术办公室的支持,由布莱恩·坎宁安(Brian Cunningham)执导的硅财团项目,由安东尼·伯雷尔(Anthony Burrell)管理。美国政府保留和出版商,通过接受该文章的出版物,承认美国政府保留了不可限制的,有偿的,不可撤销的,全球范围内的许可,以出版或复制这项工作的已发表形式,或允许其他人这样做,以实现美国政府的目的。
发现液体电池电解质有助于促进稳定的固体电解质相互作用(SEIS)减轻树突形成,这对于在下一代能量密集的电池中启用锂阳极至关重要。与传统的电解质溶剂相比,基于四氢呋喃(THF)的电解质系统已经通过鼓励阴离子的分解(而不是有机溶剂),从而产生了无机富丽石的SEIS,从而在实现高稳定性锂阳极方面取得了巨大成功。在此,通过采用各种不同的锂盐(即LIPF 6,Litfsi,Lifsi和Lidfob),可以证明电解质阴离子会调节SEI的无机组成和产生的特性。通过新的分析时间二级离子质谱法,例如对深度促值的分层聚类和使用综合产量的组成分析,从每个电解质系统产生的SEI的化学组成和形态。值得注意的是,Lidfob电解质提供了一个异常稳定的系统,可实现锂阳极,以0.5 mAh g -1的电流密度传递> 1500个循环,在对称细胞中的容量为0.5 mAh g -1。此外,LI //使用该电解质的LFP细胞表现出高速率,可逆的锂储存,提供139 mAh g(LFP)-1
锂离子电池 (LIBs) 具有高能量密度和长寿命的特点,在便携式电子设备和电动汽车方面取得了显著成功 [1-4]。然而,由于有机电解液、锂储量不足和成本高等问题,LIBs 的进一步应用受到限制 [5-7]。因此,有必要开发替代性二次电池来取代 LIBs [8,9]。水系锌金属电池 (AZMBs) 已成为有竞争力的候选电池,因为锌 (Zn) 金属负极具有优异的理论容量 (820 mAh g −1 和 5855 mAh cm −3) 和低电化学电位 (−0.76 V vs. 标准氢电极)、丰富的锌资源,以及水系电解质固有的安全性和高离子电导率 (~ 1 S cm −1 vs. 1-10 mS cm −1 有机电解质) [10-16]。然而,锌金属负极存在析氢反应(HER)、腐蚀、钝化、枝晶生长等严重问题,导致可逆性差、循环寿命不稳定,甚至发生短路故障[17–23]。这些问题严重阻碍了AZMBs的实际应用。为了克服上述问题,人们提出了各种针对锌金属负极的稳定策略,包括表面改性、结构优化、电解质工程和隔膜设计[24–31]。然而,由于使用了远远过量的锌,这些研究尚未实现较高的锌利用率[32]。为了补偿Zn的不可逆损失,提高充放电过程的循环稳定性,研究人员通常构建Zn过量(Zn箔厚度≥100μm)、面积容量低(1-5mAh cm−2)的锌金属负极,导致负极与正极的容量比高(N/P>50),放电深度(DOD)较低(<10%)[33]。放电深度(DOD)是参与电极反应的容量占锌金属负极总容量的百分比: