3-3校准方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3-9校准程序。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3-10 OSL校准。 。 。 。 。 。 。 。 。 。 。 。3-10 OSL校准。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3-11 OSL +传输(USB SEN)校准。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3-14传输(USB传感器)校准。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3-18 OSL + 2-port变速器校准(选项21)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3-20 2端口传输校准(选项21)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3-24 IOSL校准。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。3-24 IOSL校准。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3-26 IOSL +传输(USB传感器)校准。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3-28 IOSL + 2-port变速器校准(选项21)。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 3-313-28 IOSL + 2-port变速器校准(选项21)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3-31
1阿拉伯联合酋长国扎耶德大学技术创新学院2号电气工程系,萨特国王大学,利雅得国王大学,沙特阿拉伯11451,沙特阿拉伯3 3号电子和通信工程系运输,开罗,开罗11799,埃及5沃尔夫森磁化中心,加定大学的加定大学工程学院,CF10 3AT CADCIFF,英国6,英国6号电子和通信工程系,阿拉伯科学,技术与海上交通学院,CAIRO 451913,CAIRO 451913,埃及7部埃及8高级工程技术学院,El-Tagmoe El-Khames,新开罗市11765,埃及
摘要 - 流体天线系统(FAS)的出现提供了一种新颖的技术,用于获得空间多样性和利用干扰淡出在多源场景中共享的频谱共享 - 一种被称为流动天线多访问的范式(FAMA)。然而,随着用户数量的增加,干扰能力会降低。为了克服这一点,优先考虑强大用户的机会主义安排被证明是增强FAMA的有效方法。本文介绍了一种弹性的分散增强学习(RL)方法,用于opporistic Fama(O-fama),以自主选择强大的用户和每个选择的用户的FAS的端口共同选择网络总数。为了在这个多代理环境中提高学习效率,我们提出了一个新颖的团队理论RL框架,其中包括一个导数网络,指导每个解决方案的策略网络的多代理学习。我们的仿真结果证实了所提出方法的有效性。
3 伦敦都市大学通信技术中心,伦敦 N7 8DB,英国;b.virdee@londonmet.ac.uk、i.garciazuazola@londonmet.ac.uk、a.krasniqi@londonmet.ac.uk,4 马德里卡洛斯三世大学信号理论与通信系,28911 Leganés,马德里,西班牙;mohammad.alibakhshikenari@uc3m.es 5 伊拉克 Al-Turath 大学医疗器械技术工程系;amna.shibib@ieee.org 6 土耳其伊斯坦布尔 34220 Esenler 伊尔迪兹技术大学电子与通信工程系;nturker@yildiz.edu.tr 7 沙特阿拉伯利雅得国王沙特大学工程学院,POBox 800,利雅得 11421, drskhan@ksu.edu.sa 8 英国爱丁堡龙比亚大学计算工程与建筑环境学院; n.ojaroudiparchin@napier.ac.uk 9 巴勒莫大学工程系,viale delle Scienze BLDG 9,巴勒莫,IT 90128,西西里岛,意大利; patrizia.livreri@unipa.it 10 上法兰西理工大学,微电子和纳米技术研究所 (IEMN) CNRS UMR 8520,ISEN,里尔中央大学,里尔大学,59313 Valenciennes,法国; iyad.dayoub@uphf.fr 11 法国上法兰西学院,F-59313 瓦朗谢讷,法国 12 恩纳科雷大学工程与建筑学院,94100 恩纳,意大利;giovanni.pau@unikore.it 13 魁北克大学国立科学研究院 (INRS),蒙特利尔,魁北克,H5A 1K6,加拿大;sonia.aissa@inrs.ca 14 罗马“Tor Vergata”大学电子工程系,Via del Politecnico 1,00133 罗马,意大利;limiti@ing.uniroma2.it 15 阿拉伯科学、技术和海运学院电子与通信工程系,开罗 11865,埃及;mohamed.fathy@aast.edu
摘要 —本文介绍了一种基于半圆柱槽结构的高增益宽带圆柱介质谐振器天线(CDRA)。采用半圆柱槽结构将 CDRA 的高阶 HEM 12 σ 模式与槽谐振模式相结合,实现具有高增益特性的混合辐射模式。为进一步提高天线的实现增益,在不增加水平尺寸和轮廓的情况下对称使用一对寄生金属面板。此外,通过同时使用 HEM 12 σ 模式和槽模式,提出的由微带-带状线馈电结构馈电的高增益宽带 CDRA 实现了 5.92 GHz 的宽带宽。此外,通过利用馈电结构底部作为反射器的作用,无需进一步改进设计即可提高实现的增益。最后,设计、制造并测量了演示原型。所提出的天线在 27 GHz 左右的 22.1% 分数带宽 (FBW) 上实现了 12.9dBi 的峰值增益。测量结果与模拟结果非常吻合。它是 5G 毫米波无线通信的良好候选者。
这种最先进的分析将允许确定基站单元在感知和重新配置操作方面的预期发展和性能。对无线电单元技术需求的研究还将涉及基带和前传功能的分析,特别是支持监测多部门辐射的控制接口结构。通常用于这些功能的算法和模拟到数字/数字到模拟接口/处理器必须与无线电单元内的其他子集集成。需要确定与此类接口相关的功能和约束,以评估与 5G/6G 支持标准兼容的 Open RAN 的限制和操作配置。任务 2:可重构网络天线的新范式 - 概念和高级设计我们将研究新方法,并通过概念验证提供新的无线电感知和多种波束成形功能。我们将致力于设计和优化多波束天线,以实现空间分集和多波段功能。可以研究两种研究策略: - 一方面,我们将集中精力设计能够实现子波束控制的阵列天线系统,以实现多波束空间分集。- 其次,可以考虑在波束成形方面分别管理频率子带,以提供各种覆盖场景。一个问题可能是由于共集成结构而缓解 FR1(Sub-6Ghz)和 FR2(毫米波)频段。
摘要:癌症是全球最常见的死亡原因之一。脑肿瘤是一种严重且危险的肿瘤,其检测技术存在一些困难;早期肿瘤较小时很难确定其位置。本研究的目的是设计一种适合检测脑癌肿瘤的低成本微带贴片天线传感器。使用计算机仿真技术 CST Studio Suite 3D EM 仿真和分析设计了具有不同频率 2.8 GHz、3.9 GHz、5GHz 和 5.6GHz 的贴片天线,用于诊断脑肿瘤。已使用六层脑模型(脂肪、硬脑膜、脑、皮肤、脑脊液 (CSF) 和头骨)对这些共振频率(低频带 (L-B) 2 GHz、中频带 (M- B) 3.9-5 GHz 和高频带 (U-B) > 5 GHz)进行了比较研究。在脑模型上有肿瘤细胞和没有肿瘤细胞的两种情况下评估了设计的贴片传感器。已观察到三个参数,即频率相移、深度反射回波损耗和功率吸收,用于指示肿瘤细胞的存在。这项研究的结论是,中频带 (M-B) 具有良好的穿透力和更好的回波损耗深度(约 - 20dB)。同时,较高频段提供 21 MHz 相移的高分辨率,但差异回波损耗的深度值仅为 -0.1dB。所提出的工作可以为生物医学应用的贴片传感器的设计提供途径。
摘要 — 提出了一种基于欺骗表面等离子体极化激元 (SSPP) 的全空间高扫描速率漏波天线 (LWA),其由 SSPP 设计和矩形周期金属贴片组成。电磁 (EM) 波沿 SSPP 传播并耦合到金属贴片以产生快速辐射波,可实现从后到前频率的波束扫描性能。此外,通过色散关系、空间谐波和电场分布解释了设计的辐射机制。所提出的 LWA 基于 −1 阶空间谐波辐射能量,通过控制贴片的周期可实现全空间和高波束扫描速率性能。仿真结果表明,LWA 在 12.9 至 16.5 GHz 频带内实现从 − 90° 到 90° 的全空间波束扫描,同时天线还保持了 7.35°/% 的高扫描速率。