证明了3D工程的配置和结构的优势。但是,由于制造业的挑战,许多提出的想法在实践中没有吸引力。近几十年来,天线和超材料制造已由成熟的减法制造方法(例如蚀刻和加工)主导。他们专门创建2D和外部形状,但是工程内部结构的能力有限。多亏了加性制造过程,3D打印具有几个优点,其中包括制造复杂的内部结构的能力,以实现定制的介电属性;在两个轴甚至三个轴上变化和分级相对介电常数的能力;创造更便宜,更高效和轻巧设备的能力;以及3D制造的能力。挑战包括在较高频率下显而易见的分辨率和表面粗糙度,从实验室到实验室的可重复性,在同一过程步骤中的3D打印电介质到3D打印介电和低损坏导体的可重复性,以及将扩展到大量的制造挑战。在2012年至2016年之间的五年中,有23篇IEEE期刊论文证明了这一领域的增长,并在2017年至2021年之间。本文回顾了状态数字对象标识符10.1109/map.2022.3229298当前版本的日期:2022年12月23日
safran Defense&Space,Inc。(Safran DSI)是世界测试和遥测解决方案的世界领导者,已从Textron Inc.公司Bell Textron Inc.获得订单,以在美国陆军未来的Long Rangeault Apercraft(FLRAA)计划下为六架飞机提供全面的机上和地面飞行测试解决方案。这标志着下一代垂直提升能力的发展是一个重要的里程碑。Safran DSI将利用尖端技术提供全面的端到端解决方案,以确保飞机的精确数据获取,记录和分析。“ Flraa是美国陆军现代化努力的关键发展,我们很高兴通过我们先进的飞行测试解决方案为这项任务做出贡献。“该合同强调了我们团队在为美国政府提供可靠的关键任务技术方面的奉献精神和专业知识。” FLRAA旨在彻底改变陆军的垂直升降功能。由贝尔开发的Flraa是一架底型飞机,将直升机的垂直起飞和着陆能力与双涡轮螺旋桨飞机的速度和范围结合在一起。这架飞机有望成为陆军未来空运战略的关键要素。
同时发送和接收相同频率的无线信号已被认为是缓解频谱资源稀缺的一种颇具吸引力的方法 [1]。这是通过实现 IBFD 与现有技术相比可能实现的两倍频谱效率来实现的。此外,IBFD 还为电子战领域的同时多功能前端天线系统带来了机遇 [2]。IBFD 面临的主要挑战是自干扰 (SI),即从发射机泄漏到其自身共定位接收机的自干扰 [3]。大多数系统需要非常高水平的自干扰消除 (SIC) 才能正常运行。通常,为了实现预期的 110-130 dB SIC,如图 1 所示,在三个级别实现消除:射频或天线、模拟和数字 [4]-[5]。
摘要。可重构天线代表了现代无线通信的一项关键创新,可动态控制天线频率、辐射模式和极化等参数。这种适应性对于满足下一代通信系统日益增长的需求至关重要,包括 5G/6G 网络、认知无线电和物联网 (IoT)。通过集成 PIN 二极管、MEMS 和可调材料等技术,可重构天线可以适应不同的环境和操作条件,在带宽、效率和干扰缓解方面提供增强的性能。该领域的最新发展侧重于小型化、多频带操作以及与人工智能 (AI) 等先进技术的集成以实现智能重构。超材料和液晶等智能材料为实现天线设计的更大灵活性提供了新方法。可重构天线的应用正在扩展到各个领域,从航空航天和国防到医疗保健和可穿戴设备。尽管取得了重大进展,但在优化成本、功耗和可靠性方面仍然存在挑战。
速度工程技术学院于2007年成立,以授予高质量的技术教育。VCET由UGC从2021 - 2022年授予自主状态。它得到了新德里的全印度技术教育理事会(AICTE)的批准,并获得了NAAC的“ A”级认可,并被新德里的NBA获得了6个UG计划。学院拥有世界一流的基础设施,由敬业的教职员工和受过训练的行政人员组成。VCET已获得58个研发项目,筹集了12.54千万卢比,由DST,DRDO,AICTE,ISRO,MNRE,MNRE,MSME,IEDC,BIRAC,BIRAC等资助,在MSME下被公认为是商业孵化器,并由Rs资助。14个项目的104万卢比。我们的velammalians被置于Zoho,Juspay,Wells Fargo,Swiggy,Coda Global,Sirius Technologies,Amazon,Wipro,Wipro Systems,Amphisoft,Presidio等等领先的跨国公司中,我们的机构被Chennai的Anna University Center for Research Institute认识到我们的机构。
应用程序从3G,4G到5G通信,天线的工作频带逐渐从微波炉增加到毫米波,预计将来将在6G及以后到达Terahertz(THZ),以获得更多的频道容量。虽然服务5G通信的毫米波天线的研究和产品制造过程越来越成熟,但未来6G及以后使用的THZ天线的研究正在缓慢发展。THZ天线的设计,制造和测量面临重大挑战。在下部微波炉和毫米波带中使用的传统制造技术,例如印刷电路板(PCB)技术和金属铣削技术,不能应用于微米大小的THZ天线。相反,新兴的微纳米制造技术,包括3D打印,半导体光刻,微纳米烙印和深硅蚀刻技术,将用于THZ天线。此外,THZ带中底物的介电损失和金属材料的欧姆损失变得严重。具有低损失特征的新材料的研究和开发以及相应的微纳米制造过程是促进THZ天线开发的关键。这个特殊的群集将主要集中于0.1至10 THz范围内的THZ天线的研究。他们能够实现以后的6G通信及以后的每秒(TB/S)数据速率和超大型带宽。其重点将打破THZ天线设计和设备制造技术之间的障碍。这个特殊的集群还将促进全球学者与THZ技术领域的专家之间的广泛交流,为THZ天线的开发铺平了途径。潜在主题包括但不限于以下内容:
摘要。分形天线已经并将继续受到未来无线通信的关注。这是因为它们具有宽频和多频带功能、分形几何结构驱动多个谐振的机会,以及能够制造更小更轻、元件更少、辐射元件增益更高的天线。由石墨烯制成的小尺寸(即微米和纳米级)和超高频(太赫兹或 THz 范围)分形天线有可能以前所未有的数据速率(即每秒约 10 12 比特)增强无线通信。分形石墨烯天线是一种用于 THz 频谱无线电通信的高频可调天线,可实现无线纳米网络等独特应用。这是因为(单层)石墨烯是碳的一个原子厚的二维同素异形体,具有已知的最高电导率,目前任何其他材料(包括金和银等金属)都无法提供这种电导率。因此,将石墨烯的特性与微米和纳米级分形的自近似特性相结合,有可能彻底改变通信,至少在近场(几米的数量级)低功耗系统。在本文中,我们考虑了与这种颠覆性新技术的开发相关的基本物理和一些主要数学模型,以便为那些从事当前和未来研究的人提供指导,分形石墨烯天线就是用于高要求应用的先进材料的一个例子。这包括一些由石墨烯组成的分形贴片天线产生的 THz 场模式的示例模拟,根据“Drude”模型,其电导率与频率的倒数成比例。还探索了使用石墨烯生成 THz 源的方法,该方法基于红外激光泵浦以感应 THz 光电流。
如今,微带天线在许多航空航天应用中都受到青睐,例如高性能车辆、飞机、军用飞机、无人驾驶飞行器 (UAV)、航天器、雷达系统、卫星和导弹应用。本研究调查了微带贴片天线在航空航天工业尤其是全球定位系统 (GPS) 中的应用,并在 GPS L5 安全频段实现了微带贴片天线的样本设计。利用高频结构模拟器 (HFSS) 模拟了设计的高增益圆极化天线,并分析了结果。模拟的数值分析表明,在中心频率 1176 MHz 处,S11 值为 - 38.85 dB,带宽为 54 MHz,增益为 6.07 dBm。根据这些值,得出结论,它可以在全球定位 L5 安全频段中使用。
摘要。本文提出了一种基于深的神经网络(DNN)的方法,用于8个元素分阶段阵列天线的辐射模式合成。为此,将所需辐射模式的181点作为输入到DNN和阵列元素的相位作为输出提取。现有的辐射模式合成技术的DNN技术并不直接适用于数据集大小随数组尺寸呈指数增长时。为了过度使用这个瓶颈,我们提出了为DNN生成数据集的新颖有效的方法。具体而言,通过杠杆,分阶段阵列天线的恒定相移特性,数据集大小减少了几个数量级,并独立于阵列大小。这在速度和复杂性方面具有相当大的优势,尤其是在实时应用中,因为DNN可以立即学习和综合所需的模式。通过使用理想的方形梁和最佳阵列模式作为DNN的参考输入来验证所提出方法的实现。MATLAB和CST中产生的结果证明了所提出的方法在合成所需的辐射模式中的有效性。
由于卫星环境的严酷性,在注塑过程中保持 Ultem 1000 的“数据表”属性非常重要。有能力的注塑机将在加工前确定材料的理想熔体温度和压力曲线。例如,Drake Plastics 开发了最先进的工艺控制,并将其安装在模具中。该技术实时监控和保持正确的熔体温度和压力。对这种先进工艺技术的投资可最大限度地减少模内应力,防止材料降解,并实现 Ultem 1000 在天线组件中长期性能的最佳性能。CNC 加工具有多种优势,具体取决于所需数量、零件复杂性和应用的开发阶段。制造方法涉及从 Ultem 1000 挤压型材(如棒、板或管)加工出组件。虽然机械加工通常比注塑成型损失更多,但 Drake 专注于挤出高效尺寸的高性能塑料型材,以最大限度地减少机械加工过程中的材料损失。对于计划注塑成型的卫星天线,从 Ultem 1000 型材加工原型可能是产品开发项目中实用的第一阶段。零件可以快速加工,无需大量工具投资,然后进行测试以验证其性能。如果测试表明需要修改设计,则机械加工可以快速进行更改。