摘要:磁性 skyrmion 是具有非平凡自旋拓扑和新颖物理特性的涡旋状自旋结构,有望成为新型自旋电子应用的基本构建块。长期以来,人们一直提出合成反铁磁体 (SAF) 中的 Skyrmion 比铁磁材料中的 Skyrmion 具有许多优势,而铁磁材料不受尺寸和有效操控的基本限制。因此,人们热切地追求在 SAF 中实验实现 skyrmion。在这里,我们展示了用洛伦兹透射电子显微镜在 SAF [Co/Pd]/Ru/[Co/Pd] 多层中在室温下观察到的零场稳定磁性 skyrmion,其中 SAF 的未补偿矩为 skyrmion 表征提供了媒介。分别通过磁场和电磁协调方法观察到了孤立的 skyrmion 和高密度 skyrmion。即使电流和磁场都被移除,这些产生的高密度 skyrmion 仍保持零场。在 SAF 中使用 skyrmion 将推动基于自旋拓扑的实用非易失性存储器的发展。关键词:skyrmion、合成反铁磁体、电磁协调方法、Ruderman − Kittel − Kasuya − Yosida 相互作用
扭转二维范德华磁体可以形成和控制不同的自旋纹理,如 skyrmion 或磁畴。除了旋转角度之外,还可以通过增加形成扭转范德华异质结构的磁层数量来设计不同的自旋反转过程。在这里,A 型反铁磁体 CrSBr 的原始单层和双层被视为构建块。通过将这些单元旋转 90 度,可以制造对称(单层/单层和双层/双层)和不对称(单层/双层)异质结构。磁输运特性显示出磁滞的出现,这在很大程度上取决于施加磁场的大小和方向,不仅由扭转角度决定,还由形成堆栈的层数决定。这种高可调性允许在零场下切换易失性和非易失性磁存储器,并根据需要控制在负场或正场值下突然磁反转过程的出现。根据微磁模拟的支持,基于层中发生的不同自旋切换过程合理化了现象学。结果强调了扭转角和层数的组合是设计扭转磁体中自旋切换反转的关键要素,这对于自旋电子器件的小型化和实现新型自旋纹理很有意义。
强关联过渡金属氧化物因其各种奇异现象而广为人知。稀土镍酸盐(如 LaNiO 3)就是一个典型例子,它们的电子、自旋和晶格自由度之间具有紧密的互连。将它们配对成混合异质结构可以进一步增强其特性,从而产生隐藏相和突发现象。一个重要的例子是 LaNiO 3 /LaTiO 3 超晶格,其中已经观察到从 LaTiO 3 到 LaNiO 3 的层间电子转移,从而导致高自旋状态。然而,迄今为止尚未观察到与这种高自旋状态相关的宏观磁序出现。本文利用 μ 子自旋旋转、X 射线吸收和共振非弹性 X 射线散射,直接证明了在 LaNiO 3 /LaTiO 3 界面上出现了具有高磁振子能量和交换相互作用的反铁磁序。由于磁性是纯界面性的,单个 LaNiO 3 /LaTiO 3 界面本质上可以表现为原子级薄的强关联准二维反铁磁体,有可能在先进的自旋电子器件中实现技术应用。此外,其强准二维磁关联、轨道极化平面配体空穴和分层超晶格设计使其电子、磁性和晶格结构类似于超导铜酸盐和镍酸盐的前体态,但具有 S → 1 自旋态。
3 哈佛大学物理系,美国马萨诸塞州剑桥 02138 摘要 固体(能带结构)的能量与晶体动量 E(k) 图构成了导航其光学、磁性和传输特性的路线图。通过选择具有特定原子类型、组成和对称性的晶体,可以设计目标能带结构并从而设计所需特性。一个特别有吸引力的结果是设计能带,使其分裂成具有动量相关分裂的自旋分量,正如 Pekar 和 Rashba [Zh. Eksperim. i Teor. Fiz. 47 (1964)] 所设想的那样,从而实现自旋电子应用。本文提供了能带波矢相关自旋分裂 (SS) 的“设计原则”,它与传统的 Dresselhaus 和 Rashba 自旋轨道耦合 (SOC) 诱导分裂平行,但源自根本不同的来源——反铁磁性。我们使用磁对称设计原理确定了一些具有不同 SS 模式的通用 AFM 原型。这些工具还允许识别属于不同原型的具有 SS 的特定 AFM 化合物。通过密度泛函能带结构计算,使用一种特定化合物——中心对称四方 MnF 2——定量说明一种 AFM SS。与仅限于非中心对称晶体的传统 SOC 诱导效应不同,我们表明反铁磁诱导自旋分裂扩大了范围,甚至包括中心对称化合物,并且即使没有 SOC,SS 的量级也与最知名的(“巨大”)SOC 效应相当,因此不依赖于高 SOC 所需的通常不稳定的高原子序数元素。我们设想,使用当前的设计原理来识别具有自旋分裂能带的最佳反铁磁体将有利于有效的自旋电荷转换和自旋轨道扭矩应用,而无需包含重元素的化合物。 _____________________________________________________________________________ 电子邮件:erashba@physics.harvard.edu;alex.zunger@colorado.edu
[1] JT Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, SY Yang, DE Nikonov, Y.-H. Chu, S. Salahuddin 和 R. Ramesh, 《铁磁体-多铁性异质结构中的电场诱导磁化反转》, Phys Rev Lett 107 , 217202 (2011)。[2] SO Sayedaghaee, B. Xu, S. Prosandeev, C. Paillard 和 L. Bellaiche, 《多铁性 BiFeO3 中的新型动态磁电效应》, Phys Rev Lett 122 , 097601 (2019)。 [3] A. Haykal 等人,BiFeO 3 中受应变和电场控制的反铁磁纹理,Nat Commun 11,1704 (2020)。[4] H. Jang 等人,外延 (001) BiFeO3 薄膜中的应变诱导极化旋转,Phys Rev Lett 101,107602 (2008)。[5] IC Infante 等人,BiFeO 3 中外延应变桥接多铁性相变,Phys Rev Lett 105,057601 (2010)。 [6] H. Béa 等人,巨轴比化合物室温多铁性证据,Phys Rev Lett 102,217603 (2009)。[7] IC Infante 等人,BiFeO 3 薄膜室温附近的多铁性相变,Phys Rev Lett 107,237601 (2011)。[8] H. Béa、M. Bibes、F. Ott、B. Dupé、X.-H. Zhu、S. Petit、S. Fusil、C. Deranlot、K. Bouzehouane 和 A. Barthélémy,多铁性 BiFeO 3 外延薄膜的交换偏置机制,Phys Rev Lett 100,017204 (2008)。 [9] D. Lebeugle,D. Colson,A. Forget,M. Viret,AM Bataille 和 A. Gukasov,室温下电场诱导 BiFeO3 单晶自旋翻转,Phys Rev Lett 100,227602(2008)。[10] A. Finco 等人,非共线反铁磁体中的拓扑缺陷成像,Phys Rev Lett 128,187201(2022)。[11] M. Hambe,A. Petraru,NA Pertsev,P. Munroe,V. Nagarajan 和 H. Kohlstedt,跨越界面:磁性复合氧化物异质结构中隧道电流的铁电控制,Adv Funct Mater 20,2436(2010)。 [12] SR Burns、O. Paull、J. Juraszek、V. Nagarajan 和 D. Sando,《外延 BiFeO 3 中的摆线或非共线反铁磁性实验指南》,《先进材料》第 32 卷,2003711 页 (2020 年)。[13] M. Cazayous、Y. Gallais、A. Sacuto、R. de Sousa、D. Lebeugle 和 D. Colson,《在 BiFeO 3 中可能观察到摆线电磁振子》,《物理评论快报》第 101 卷,037601 页 (2008 年)。[14] D. Sando 等人,《通过外延应变制作 BiFeO 3 薄膜的磁振子和自旋电子响应》,《自然材料》第 12 卷,641 页 (2013 年)。 [15] J. Li 等人,亚太赫兹产生的反铁磁磁振子的自旋电流,Nature 578,70 (2020)。[16] E. Parsonnet 等人,在没有施加磁场的情况下对热磁振子的非挥发性电场控制,Phys Rev Lett 129,87601 (2022)。[17] S. Manipatruni、DE Nikonov、CC Lin、TA Gosavi、H. Liu、B. Prasad、YL Huang、E. Bonturim、R. Ramesh 和 IA Young,可扩展的节能磁电自旋轨道逻辑,Nature 565,35 (2019)。 [18] YT Chen、S. Takahashi、H. Nakayama、M. Althammer、STB Goennenwein、E. Saitoh 和 GEWBauer, 自旋霍尔磁阻理论, Phys Rev B 87 , 144411 (2013)。[19] J. Fischer 等人, 反铁磁体/重金属异质结构中的自旋霍尔磁阻, Phys Rev B 97 , 014417 (2018)。
由于其独特的属性组合:非挥发性,速度,密度和写入耐力,称为自旋转移磁性磁性随机接入记忆(STT-MRAM)的自旋记忆有望在物联网(IoT)的未来发展中起重要作用(IOT),并且在信息和通信技术中更笼统地发挥作用。这种类型的自旋装置通常是由材料制成的,其中一些可以归类为关键。最近的研究评估了磁随机访问记忆中包含的关键材料[1,2]。但是,在那些情况下,分析的记忆类型属于2000年代初期开发的第一代MRAM。如今,存储器设备被垂直于层平面磁化,并包含合成反铁磁铁(SAF)(SAF),该抗fiferromagnet(SAF)可为STT-MRAM参考层具有较低的流浪场提供高温。此SAF通常由钴(CO)和铂(PT)多层制成,抗铁磁性在薄扁桃(RU)层上耦合。由于铂金属(PGMS)的高体能量引起的,评估这些材料的普遍关注点是与其生产相关的环境风险。在这里首先报道对使用此类多层的环境和经济风险的评估,然后对其供应风险进行讨论。用CO/NI多层替换CO/PT多层替代可以导致与使用这些多层人士使用相关的能量需求或全球变暖潜力(GWP)的3-4个数量级。尽管如此,与PGMS相关的高供应风险仍然是提高意识的原因。基于垂直形状各向异性(PSA)的替代概念也可以在这些量中减少1-2个数量级。然而,对于Stt-Mram的情况,与硅晶片的质量相比,使用了少量的PGM层,这些硅晶片生长了这些类型的设备。因此,发现硅晶片制造的环境和经济影响要比STT-MRAM堆栈中纳入的PGM材料高得多。一个探索的可能性是基于Co/ni多层的SAF结构,其性能相似。还基于上述PSA概念提出了更具挑战性的选择。最后,我们解决了欧洲委员会确定的其他几种金属的案例,这些金属在MRAM(例如W或TA)中使用,最近都包括在2021年1月发布的欧盟冲突矿产法规中[3]。