主题的信息安全概念的收集概念。1.1保护病毒和其他形式的软件或侵入性动作 - 第一部分(信息安全)。3.06%的信息安全概念。1.1保护病毒和其他形式的软件或侵入性动作 - 第二部分(恶意软件)17.50%的信息安全概念。1.1保护病毒和其他形式的软件或侵入性动作 - 第三部分(Antimalware)4.72%的信息安全概念。1.1对病毒和其他形式的软件或侵入性动作的保护 - 第四部分(防火墙)4.44%处理,处理和可视化数据。3个商业智能概念(BI) - 第一部分(BI/DW)45.83%的数据处理,处理和可视化。3个商业智能概念(BI) - 第二部分(多维建模)24.44%
使用智能充电站促进连接和自动驾驶汽车的网络检查方法。Accordingly, the method comprises receiving an information associated with a connected and autonomous electrical vehicle (CAEV) connected to a smart charging station, identifying an operation comprising a scanning operation based on the information, generating a request for facilitating the scanning operation comprising a cyber security threats scan, a cyber-attacks scan, an antivirus scan, an antimalware, an anti-ransomware, and a security扫描,将请求传输到由网络安全提供商组成的服务提供商的服务提供商设备,从服务提供商设备接收扫描操作信息,对CAEV的ECU进行扫描操作,以通过扫描信息来促进CAEV的网络检查,从而基于CAEV的状态,从而基于STRACTINS STEMATION,TRAMSINGIND STEMATION,STERMING STERMETIMS a State and start and start and start and start and start and start and stat,并将其state and start and starts and state and stat and start and设备。
抽象恶意软件构成了对网络基础架构的主要威胁,该威胁容易受到几种破坏性恶意软件攻击的影响,例如病毒和勒索软件。传统的Antimalware软件可提供有限的效率,以防止恶意软件删除,因为不断发展的恶意软件能力(例如多态性)。Antimalware仅删除了其签名的恶意软件,并且对零日间攻击无效和无助,几项研究工作利用了监督和无监督的学习算法来检测和分类恶意软件,但假阳性占上风。这项研究利用机器学习来通过采用机器学习技术(包括特征选择技术以及网格搜索超参数优化)来检测和对恶意软件进行分类。主成分分析与Chi Square结合使用,以治愈维数的诅咒。支持向量机,K最近的邻居和决策树用两个数据集分别训练模型。使用混乱矩阵,精度,召回和F1评分评估了研究模型。使用CICMALMEM数据集分别使用K最近的邻居,决策树和支持向量机获得了99%,98.64%和100%的精度,该数据集分别具有相等数量的恶意软件和良性文件,K最近的邻居无法实现误报。未来的作品包括采用深度学习和集成学习作为分类器以及实施其他超参数优化技术。关键字:恶意软件检测,功能选择,超参数调整,网格搜索,机器学习。Accuracy of 97.7%,70% and 96% was achieved with K Nearest Neighbor, Decision Tree and Support Vector Machine respectively with Dataset_Malware.csv dataset, K Nearest Neighbor achieved False Positives of 38.The Model was trained separately with default hyperparameters of the chosen algorithms as well as the optimal hyperparameters obtained from Grid Search and it was discovered that optimizing超参数和与主组件分析获得的功能和Chi Square获得的功能使用具有相等数量的良性和恶意文件(CICMALMEM数据集)的数据集训练模型,从而通过支持向量机获得了最佳性能。简介的使用互联网的使用兴起,这是一个全球互连计算机网络的网络,带来了新的风险和漏洞。网络安全面临的主要问题之一是恶意攻击(Abiola&Marhusin,2018年)。恶意软件(也称为恶意软件)是侵入性软件,其设计具有伤害的特定目标,获得
恶意软件是任何可能对计算机系统造成损害的软件。恶意软件构成了对信息系统的重大威胁,这些威胁多年来遭受了几次毁灭性攻击的影响。传统的Antimalware软件由于多种恶意软件(例如多态性)的逃避技术提供了有限的效率,以防止恶意软件删除。Antimalware只能删除其签名的恶意软件,并且对零日间攻击无效和无助。几项研究工作利用受监督和无监督的学习算法成功地检测和对恶意软件进行了分类,但是在相关研究工作中占据了误报和虚假否定,以及利用不足的数据集,这些数据集未能捕获尽可能多的恶意软件家庭来概括地发现发现。这项研究利用机器学习来检测和对恶意软件进行使用机器学习技术,包括特征选择技术以及超参数优化。主成分分析用于治疗由于用于容纳大量恶意软件系列的大型数据集而导致的维度诅咒。支持向量机,K最近的邻居和决策树用于使用两个数据集进行性能比较的模型。通过使用网格搜索和K-折叠验证并调用最佳参数以实现最佳性能,以获得最佳性能,以获得最佳的检测准确性和低的检测和低底片,从而提高了模型的性能,从而增强了所选分类器的超参数以呼吁最佳性能。使用混乱矩阵,精度,召回和F1评分评估了研究模型。准确度为99%,98.64和100%,与K最近的邻居,决策树和支持向量机与CICMALMEM数据集分别具有相等数量的恶意软件和良性文件,与K最近的邻居达到了零误报,而准确性的准确性为97.7%,70%和96%的数据,而Datation却在k中相得益彰,而DATAIT则相应地数据。与K最近的邻居一起,还可以实现38的最低误报数量。该模型接受了默认超标仪的培训,以及通过调整超参数来获得的表演来获得的超级参数,并且发现优化超标仪和功能选择技术的优化能力并不一定能够与DataIns的表现更好,并且可以通过良好的数量进行良好的数量,并提供了良好的数量。未来的作品包括使用深度学习和集合学习作为分类器以及其他超参数优化技术,例如贝叶斯优化和随机搜索,其他具有较高恶意软件系列的数据集也可以用于培训。