JEC 创新奖旨在表彰复合材料行业参与者之间卓有成效的合作。在过去 15 年中,JEC 创新奖吸引了全球 1,800 家公司。177 家公司和 433 家合作伙伴因其卓越的复合材料创新而获得奖励。JEC 创新奖根据合作伙伴在价值链中的参与度、创新的技术性或商业应用等标准对复合材料冠军进行奖励。3D 打印,2019 年的新类别 2019 年,国际专家评审团从一百多个申请中选出了 30 名决赛入围者。他们参加 10 个类别的角逐,其中包括新的 3D 打印类别。 “JEC 创新奖计划具有象征意义,表彰了复合材料创新领域的先驱。3D 打印在我们的行业中扮演着新角色。轻质、耐用的材料允许极大的设计自由,而技术可以实现复杂的形状,这对制造商来说很有吸引力。许多制造商已经开始使用它来打印汽车零件、飞机零件或建筑墙壁”,JEC 集团创新内容负责人 Franck GLOWACZ 分析道。“由于提名者的水平很高,JEC 创新奖颁奖典礼应该会非常丰富!” 享有盛誉的国际评审团 • Anurag BANSAL,ACCIONA Infraestructuras 全球业务发展经理
Environmental 35 270S anj an a Sing h Rame sh war Prasad Scheduled Caste 2 3988 SC Engineering Environmental 36 366 D ivyanshi Dutt Sunil Dutt Scheduled Caste 2 6334 SC Engineering Environmental 37 114 G uru Gyan Singh Hare Ram Singh Scheduled Tribe 965 ST Engineering Shiv Shankar 39 228 Kushwaha Mohan Singh OBC NCL 18391 Al Mechanical Engineering 40 354 Ankita Pandey Ghanshyam Pandey General 25141 Al Mechan ic al E ngi neering 38 309 Anurag Gupta Ra jendra Gupta OBC NCL 26439 Al Mechan ic al Eng ineering 41 383 Piy ush Tya gi Sanjay Tyagi General 68 Al Mechanical Engineering Deept Murti Chandra Kant 42 296 Madhav Verma OBC NCL 211 BC Mechan ical Engineering 43 145 Abhishek Singh Sunil Kumar Singh OBC NCL 266 BC Mechanical Engineering Chandeshwar 44 125 Niranjan Verma Prasad OBC NC L 313 BC Mechanical Eng ineering Vijay Nirma\ 45 117 Ruchi Sharma Sharma General EWS 291 EWS Me cha Nical Eng eneering
安贝尔纳特:Susan Titus 博士,海军材料研究实验室(NMRL);昌迪普尔:PN Panda 先生,综合试验场(ITR);班加罗尔:Subbukutti S 先生,航空发展研究所(ADE);MR Bhuvaneswari 先生,机载系统中心(CABS);Faheema AGJ 先生,人工智能与机器人中心(CAIR);Tripty Rani Bose 女士,军事适航与认证中心(CEMILAC);Josephine Nirmala M 先生,国防航空电子研究研究所(DARE);Anuya Venkatesh 先生,国防生物工程与电医学实验室(DEBEL);Venkatesh Prabhu 先生,电子与雷达发展研究所(LRDE);Vishal Kesari 博士,微波管研究与发展中心(MTRDC);昌迪加尔:HS Gusain 博士,雪与雪崩研究研究所(SASE); Prince Sharma 博士,终端弹道研究实验室 (TBRL);钦奈:Smt S Jayasudha,战斗车辆研究与发展机构 (CVRDE);德拉敦:Shri Abhai Mishra,国防电子应用实验室 (DEAL);Shri JP Singh,仪器研究与发展机构 (IRDE);德里:Shri Ashutosh Bhatnagar,人事人才管理中心 (CEPTAM);Dipti Prasad 博士,国防生理与相关科学研究所 (DIPAS);Nidhi Maheshwari 博士,国防心理研究所 (DIPR);Navin Soni,核医学与相关科学研究所 (INMAS);Anurag Pathak,系统研究与分析研究所 (ISSA);Indu Gupta 博士,激光科学与技术中心 (LASTEC);Noopur Shrotriya 女士,科学分析组 (SAG); Rupesh Kumar Chaubey 博士,固体物理实验室 (SSPL);瓜廖尔:RK Srivastava 先生,国防研发机构 (DRDE);哈尔德瓦尼:Atul Grover 博士,国防生物能源研究所 (DIBER);海得拉巴:Hemant Kumar 先生,先进系统实验室 (ASL);Pramod K Jha 先生,先进系统中心 (CAS);JK Rai 博士,先进数值研究与分析组 (ANURAG);Bidisha Lahiri 女士,高能系统与科学中心 (CHESS);ARC Murthy 先生,国防电子研究实验室 (DLRL);Manoj Kumar Jain 博士,国防冶金研究实验室 (DMRL);K Nageswara Rao 博士,国防研究与发展实验室 (DRDL);Lalith Shankar 先生,伊玛拉特研究中心 (RCI);贾格达尔布尔:Gaurav Agnihotri 博士,SF 综合体 (SFC);焦特布尔:Shri Ravindra Kumar,国防实验室 (DL);坎普尔:Shri AK Singh,国防材料与仓储研究与发展机构 (DMSRDE);科钦:Smt Letha MM,海军物理与海洋实验室 (NPOL);列城:Dorjey Angchok 博士,国防高海拔研究所 (DIHAR);穆索里:Gopa B Choudhury 博士,技术管理学院 (ITM);迈索尔:M Palmurugan 博士,国防食品研究实验室 (DFRL);浦那:JA Kanetkar 博士 (Mrs),军备研究与发展机构 (ARDE);Vijay Pattar 博士,国防先进技术研究所 (DIAT);Shri AM Devale,高能材料研究实验室 (HEMRL);Shri SS Arole,研究与开发机构 (Engrs) [R&DE (E)];特兹普尔:Dr Jayshree Das,国防研究实验室 (DRL)
喜马拉雅研究 (NMHS)” 赞助项目现诚邀积极进取的优秀候选人申请初级研究员 (JRF) 职位,参与由‘环境、森林和气候变化部 (NMHS) 资助的研究项目,该项目名为“通过本土定制将原始聚合物废物净化和增值成先进的多维碳纳米材料 (PAVITRAM),用于包括超级电容器和电池在内的大规模储能应用”,在 ABV- IIITM、Gwalior 开展,与 Kumaun University Nainital、Kurukshetra University Kurukshetra、石油与能源研究大学 (UPES) Dehradun 和 Nagar Panchayat Nainital 合作。研究项目领域:储能应用(超级电容器和电池)。项目研究员:Anurag Srivastava 博士,教授 职位名称:初级研究员 (JRF) 职位数量:一个 资格:必需:理学硕士。获得认可大学的物理/化学或工程物理/纳米技术/材料科学/冶金学/化学工程/电子学硕士学位或同等学历,有/没有 NET/GATE/JEST/DST-Inspire/国家级资格考试。期望:具有密度泛函理论 (DFT) 计算/建模和仿真/编程经验者优先。年龄限制:截至 2024 年 6 月 25 日不得超过 28 岁,根据印度政府的规定,某些保留类别可放宽年龄限制。奖学金:卢比。NET/GATE/JEST/DST-Inspire/国家级考试合格的候选人可获得 31,000/- + HRA(如果学院没有校园住宿)。未通过 NET/GATE/JEST/DST-Inspire/国家级考试的候选人可被选为项目研究员,奖学金为 24,000/- + HRA(如果学院没有校园住宿)。项目持续时间:最初为一年,根据双方协议和候选人的表现,可能会延长至项目完成。申请截止日期:2024 年 6 月 25 日或之前 一般条款和条件:该职位纯属临时合同,每年可续签,但需表现令人满意。该职位与项目同期限。入选该职位的候选人只要满足资格标准,也可以申请 ABV-IIITM、Gwalior 的常规或项目赞助的博士学位课程。选择完全基于候选人在面试中的适合性和表现。面试时必须出示年龄证明/证书/学位/成绩单和其他证明的原始文件以及这些文件的自认证复印件。只有入围的候选人会通过电子邮件通知参加面试,其他与此相关的沟通将不予受理。面试小组的决定是最终决定,在任何平台上都不可质疑。仅拥有 NET/GATE 资格并不能保证您被选中,这完全取决于您在面试中的表现。注意:参加面试不会获得 TA/DA 报酬。完整的申请表连同附件中的所有支持文件应于 2024 年 6 月 25 日或之前通过特快专递或电子邮件附件(完整合并为一个 PDF)送达 PI 的以下地址,电子邮件 ID:anurags@iiitm.ac.in,主题为:“申请初级研究员 (JRF) 职位”。Anurag Srivastava 博士 PAVITRAM 项目教授和 PI,先进材料研究组,CNT 实验室,ABV-IIITM,Gwalior 地址:E-Block,房间号。110, ABV-IIITM, Gwalior, Madhya Pradesh, India, 474015 电子邮件:profanurag@gmail.com;anurags@iiitm.ac.in 电话号码。:+91-751-2449826 (O); 2449823 (秘书) 手机: 9826189049
我们还非常感谢我们的利益相关者——来自政府、业界、学术界和国际组织的专家和思想领袖——在为本研究进行的利益相关者磋商中分享他们的观点、见解和建议。特别感谢 Aakansha Shenoy 女士(Upaya Social Venture);Abbas Uddin 先生(孟加拉国纺织大学);Anjali Krishnan 女士(IDH - 可持续贸易倡议);Ankit Gupta 先生(印度烟草有限公司);Anurag Gupta 先生(Usha Yarns);Beatriz Luz 女士(Exchange 4 Change Brasil);Deepti Gupta 教授(印度理工学院德里分校);Emmanuelle Batista 女士(Citeo);John Girling 先生(WRAP);JK Gupta 先生(印度标准局);Karan Kumar 先生(Laudes 基金会);Khushbu Maheshwari 女士(Fashion for Good); Mahesh K Patil 先生和 Livia D'Silva 女士(果阿邦污染控制委员会);Makarand Kulkarni 先生(Revalyu);Milind Rane 先生(Ef4 Resurrect);Naresh Tyagi 博士和 Padmakar Pandey 先生(Aditya Birla Fashion and Retail);Pham Manh Hoai 先生(世界自然基金会越南分会);Prakash Vasudevan 博士(南印度纺织研究协会);Rahul Mehta 先生(印度服装制造商协会);Rajneesh Rai 先生、Kritika Chauhan 女士和 Snigdha Voruganti 女士(Shahi Exports);Shobha Raghavan 女士和 Aastha Khubele 女士(Saahas Zero Waste);Toby Connock 先生(Pentatonic);Valerie Boiten 女士和 Sophie Moggs 女士(艾伦·麦克阿瑟基金会);以及 Varsha Gupta 女士(NIFT),感谢他们为该项目付出宝贵的时间。
Robin van Kessel, a Laure-Elise Seghers, a Michael Anderson, a Nienke M Schutte, b Giovanni Monti, a Madeleine Haig, a Jelena Schmidt, c George Wharton, a Andres Roman-Urrestarazu, d Blanca Larrain, d Yoann Sapanel, e Louisa Stüwe, f Agaux Bourthe, g Ivana Yong, f Ivan Lee ccoud, h Liyousew Borga, h Njide Ndili, i Eric Sutherland, j Marelize Görgens, k Eva Weicken, l Megan Coder, m Heimar de Fatima Marin, n Elena Val, o Maria Cristina Profili, o Monika Kosinska, p Christine Elisabeth Browne, q Alvin Marcelo, r Smisha Agar s, F Monque, Havn, Eskan, Mraz, M. and Marina Smelyanskaya, v Karin Källander, w Stefan Buttigieg, x Kirthi Ramesh, y Louise Holly, z Andrzej Rys, aa Natasha Azzopardi- Muscat, ab Jerome de Barros, ac Yuri Quintana, ae Adnan A Hyder, af Alain Labrique, v Kamel Maged Kamel, ah Jug An Jug, ai g Jochen Klucken, h Barbara Prainsack, ak Ran Balicer, al Ilona Kickbusch, z David Novillo-Ortiz ab & Elias Mossialos a
ED1-2 ( 口头 ) 14:45 - 15:00 通过掺杂分布工程提高 p-GaN 栅极 HEMT 的稳健性 Matteo Borga 1 , Niels Posthuma 1 , Anurag Vohra 1 , Benoit Bakeroot 2 , Stefaan Decoutere 1 1 比利时 imec,2 比利时 imec、CMST 和根特大学 ED1-3 ( 口头 ) 15:00 - 15:15 在低 Mg 浓度 p-GaN 上使用退火 Mg 欧姆接触层的横向 p 型 GaN 肖特基势垒二极管 Shun Lu 1 , Manato Deki 2 , Takeru Kumabe 1 , Jia Wang 3,4 , Kazuki Ohnishi 3 , Hirotaka Watanabe 3 , Shugo Nitta 3 , Yoshio Honda 3 , Hiroshi Amano 2,3,4 1 日本名古屋大学工程研究生院、2 日本名古屋大学深科技系列创新中心、3 日本名古屋大学可持续发展材料与系统研究所、4 日本名古屋大学高级研究所 ED1-4(口头) 15:15 - 15:30 高 VTH E 模式 GaN HEMT 具有强大的栅极偏置相关 VTH 稳定性掺镁 p-GaN 工程 吴柯乐 2 , 杨元霞 2 , 李恒毅 2 , 朱刚廷 2 , 周峰 1 , 徐宗伟 1 , 任方芳 1 , 周东 1 , 陈俊敦 1 , 张荣 1 , 窦友正 1 , 海陆 1 1 南京大学, 中国, 2 科能半导体有限公司, 中国 ED1-5 (口头报告) ) 15:30 - 15:45 EID AlGaN/GaN MOS-HEMT 中 Al 2 O 3 栅氧化膜下的电子态分析 Takuma Nanjo 1 , Akira Kiyoi 1 , Takashi Imazawa 1 , Masayuki Furuhashi 1 , Kazuyasu Nishikawa 1 , Takashi Egawa 2 1 Mitsubishi electric Corporation, Japan, 2 Nagoya Inst.日本科技大学
Anahita Fathi Kazerooni 1,Nastaran Khalili 1,Xinyang Liu 2,Debanjan Haldar 3,Zhifan Jiang 2,Anna Zapaishchykova 4,Julija Pavaine 5,Julija Pavaine 5 Khanak K. Nandolia 12,Andres F. Rodriguez 13,Ibraheem Salman Shaikh 14,Mariana Sanchez-Montano 15,Holley Adewole 17,Jake Albrecht 18,Udunna Anazodo 19,Hannah Anazodo 19,Hannah Anderson 20,Syed Muhammed Anwar2 22,蒂莫西·贝格斯(Timothy Bergquist)18,奥斯汀·J·博尔贾(Austin J. Janas 30, Elaine Elaine 31, Alexandros Karargyris 21, Hasan Kassem 21, Neda Khalili 1, Florian Kofler 32, Dominic Labella 33, Koen Van LEMPUT 34, Hongwei B. Li 35 , Nazanin Maleki 30, Zeke Meier 36, Bjoern Menze 37, Ahmed W. Moawad 38, Sarthak Pati 21, Marie Pirud 32,Tina Poussant 4,Zachary D. Rudare 39,Rachit Saluja 40,Micah Sheller 21,Russell Takeshi Shinohara 41,Karthik Viswanathan 1,Chunhao Wang 33,Benedikt Wiestler 42,Walter F. Wigter F. Wiggin F. Wiggin S. 43,Cristos B. 风暴1,Miriam Bornhorst 45,Roger Packer 45,Trent Hummel 46,Peter de Blank 46,Lindsey Hoffman 47,Lindse Aboian 8,Ali Nabavizade 1,Jeffrey B. Ware 1,Benjamin H. Linguraru 2风暴1,Miriam Bornhorst 45,Roger Packer 45,Trent Hummel 46,Peter de Blank 46,Lindsey Hoffman 47,Lindse Aboian 8,Ali Nabavizade 1,Jeffrey B. Ware 1,Benjamin H. Linguraru 2
我们的编辑团队 职位 姓名 地址 主编 Ashish Khandelwal Flat No 594, Krishi Kunj, Inderpuri, New Delhi 110012,电子邮件:ashishkhandelwal@iari.res.in 高级编辑 Kuleshwar Sahu Room No 23, Hemant Hostel, IARI, PUSA Campus, New Delhi 110012,电子邮件:kuleshwar_10651@iari.res.in Sudhir Kumar Jha 科学家,植物生物技术部,Room No. 4, Block A, ICAR-IIPR, Kalyanpur, Kanpur 208024,电子邮件:sudhir.kumar7@icar.gov.in Sonica Priyadarshini 房间号。 121,Varsha 女生宿舍,ICAR-IARI Pusa 校区,新德里 - 110012,电子邮箱:sonicapriyadarshini@gmail.com Dr R Vinoth 教学助理(PBG),农业学院,泰米尔纳德邦农业大学,Kumulur,Trichy,泰米尔纳德邦,- 621 712,电子邮箱:ioakumulur@tnau.ac.in 副主编 Asish Kumar Padhy B101,学生宿舍,国家植物基因组研究所,Aruna Asaf Ali Marg,新德里 - 110067,电子邮箱:apadhy@nipgr.ac.in Praveen Verma 房间号 211,Keshav 宿舍,Dr Yashwant Singh Parmar 园艺和林业大学,Nauni,Solan,HP-173230 电子邮箱:praveenver2014@gmail.com Rakesh Kumar 房间号。 16, Hemant 宿舍,IARI pusa 校区新德里,110012,电子邮件:Rakeshmund94@gmail.com Priyank Sharma Kanta Kaundal Niwas 近 Pwd Third Circle Chowk Bazar Solan Himachal Pradesh,Pincode-173212 电子邮件:sharmapriyank877@gmail.com Ashish Gautam 博士。学者(GPB),房间编号 143,宿舍 Shashtri Bhawan,GB Pant 农业与技术大学,Pantnagar,北阿坎德邦,邮政编码 - 263145,电子邮件:gautam.ashish801@gmail.com Tapas Paul 房间编号 206,CHS 宿舍,老校区 ICAR-中央渔业教育学院 Versova,Seven Bungalow,Andheri West,孟买 400061,电子邮件:tapas.aempa903@cife.edu.in Utpalendu Debnath Near Janani 宾馆,Jail Ashram Road,Dhaleswar,Agartala,西特里普拉邦,特里普拉邦-799007 电子邮件 – utpalenduagri.bsc@gmail.com Anurag Bhargav 18,Hirabaug Society,80 Feet Road,Wadhwan Surenreanagar,古吉拉特邦-363002 电子邮件: anuragbhargav@student.aau.in Sukriti Singh 18, Hirabaug Society, 80 Feet Road, Wadhwan Surenreanagar, Gujrat-363002 电子邮件:anuragbhargav@student.aau.in Vikas Lunawat Office No. 59, Mahila Samridhi Bazar , Budhapara
1。Luckow VA,萨默斯医学博士。杆状病毒表达载体发展的趋势。生物技术。1988; 6(1):47-55。 doi:10。 1038/nbt0188-47 2。 Possee Rd。 杆状病毒作为基因表达载体。 Annu Rev Micro-Biol。 1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。 Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。 Curr Opin Biotechnol。 1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1988; 6(1):47-55。 doi:10。1038/nbt0188-47 2。Possee Rd。杆状病毒作为基因表达载体。Annu Rev Micro-Biol。1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。 Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。 Curr Opin Biotechnol。 1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。Curr Opin Biotechnol。1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。Pijlman GP。包裹的病毒样颗粒作为针对病原藻病毒的疫苗。生物技术j。2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。杆状病毒表达系统的机会和挑战。J Invertebr Pathol。2011; 107(增刊):S3-S15。doi:10.1016/j.jip.2011.05.001 6。Kost TA,Condrey JP,Jarvis DL。杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。nat生物技术。2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2005; 23(5):567-575。 doi:10.1038/nbt1095 7。rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。疫苗发育中的病毒样颗粒。专家Rev疫苗。2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。Cox M.现代技术:首选的生物安全策略?vaccin。2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。mbio。2021; 12:e0181321。n Engl J Med。显示糖基化尖峰S1结构域的两组分纳米颗粒疫苗可诱导针对SARS-COV-2变体的中和抗体反应。doi:10.1128/mbio.01813-21 10。Shinde V,Bhikha S,Hoosain Z等。NVX-COV2373 COVID-19疫苗对B.1.351变体的功效。 2021; 384(20):1899-1909。 doi:10.1056/nejmoa2103055 11。 Anurag SR,Winkle H.逐饰方法。 nat生物技术。 2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。 Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测NVX-COV2373 COVID-19疫苗对B.1.351变体的功效。2021; 384(20):1899-1909。 doi:10.1056/nejmoa2103055 11。Anurag SR,Winkle H.逐饰方法。nat生物技术。2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。 Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。J IND微生物生物技术。2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测Carvell JP,Dowd JE。使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。细胞技术。2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2006; 50(1 - 3):35-48。 doi:10。1007/s10616-005-3974-x 14。Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关