摘要:由于其具有吸引力的机械,电子,折射率和其他特性而闻名过渡金属。通过在激光加热的钻石砧细胞中,通过同步加速器单晶X射线衍射实验鉴定出一类新的硼酸盐。可回收到环境条件,化合物rhenium triboride(REB 3)和四翼烷(REB 4)由近包装的单层rhenium原子组成,这些原子与硼龙网络交替与硼龙网络交替,该网络由脱落的六边形层构建,它们将短短粘合(〜1.7Å)轴向轴承轴向轴承轴承轴承(〜1.7Å),轴向轴向轴向轴承轴承轴承轴承轴承。沿着六角形C轴定向的短而不可压缩的RE -B和B -B键导致低轴向可压缩性与钻石的线性压缩性相当。REB 3和REB 4的亚毫米样品在低至33 GPA的压力下合成,用于材料表征。两种化合物的晶体都是金属和坚硬的(Vickers硬度,H V = 34(3)GPA)。几何,晶体化学和理论分析的注意事项表明,具有X> 4的潜在REB X化合物可以基于与REB 3和REB 4中相同的结构组织原理,并且具有相似的机械和电子特性。
由于高压下Yttrium Hydride中的近气温超导率,Yttrium-Hydrium Hydrogen系统引起了人们的关注。我们使用同步子单晶X射线衍射(SCXRD)在87至171 GPA进行了研究,从而发现已知的(两个YH 3相)和五个以前未知的Yttrium氢化物。通过用富含氢的前光照器(北氨虫或石蜡油)激光加热YTTRIUM在钻石砧细胞中合成这些。根据SCXRD确定了新相结构中YTTRIUM原子的排列,并且基于经验关系和依从计算的氢含量估计揭示了以下化合物:y 3 H 11,y 2 H 9,y 2 H 9,y 2 H 9,y 4 H 4 H 23,y 4 H 23,y 13 H 75和y 4 H 4 H 4 H 25。这项研究还发现了碳化物(YC 2)和两个Yttrium同素异形体。复杂的相多样性,Yttrium Hydride中的氢含量及其金属性质,如从头算计算所揭示的那样,强调了鉴定超导阶段的挑战,并了解高压合成材料中的电子过渡。
Electroimpact 和 Lockheed Martin 开发了用于 C-130J 后机身面板的自动钻孔和紧固系统。为将该系统整合到 Lockheed Martin 现有的制造模式中,并调整 Electroimpact 现有的铆接机系列以制造这些旧式飞机部件,我们克服了许多设计和制造挑战。自动化方面的挑战包括设计一个非常长但足够坚固和轻巧的偏置铆接砧,用于紧固在深圆周框架周围,自动送入非常短的“方形”铆钉(其长度与头部直径相似),为没有现有 3D 制造数据的传统部件创建零件程序和模拟模型,以及为飞机部件提供防撞保护,防止机器碰撞(考虑到模型固有的不确定性和飞机部件的独特几何形状)。在将系统整合到 Lockheed Martin 现有的制造方法中时,我们克服了其他挑战,同时避免中断正在进行的生产活动和交付计划。我们找到并实施了所有这些问题的创新和新颖的解决方案。最终成功实现了机尾钻孔和铆接工作的自动化,从而提高了制造质量和生产成本,并开发出了可应用于未来自动化系统的新技术。
尽管人工智能和量子计算 (QC) 正迅速成为未来互联网的关键推动者,但专家认为它们对人类构成了生存威胁。针对 ChatGPT/GPT-4 的疯狂发布,数千名感到震惊的科技领袖最近签署了一封公开信,要求暂停人工智能研究,为不受控制的 AGI (通用人工智能) 对人类造成的灾难性威胁做好准备。AGI 被视为“认识论的噩梦”,人们认为 GPT-5 会使 AGI 陷入危险。两条计算规则似乎是造成这些风险的原因。1) 强制第三方权限,允许计算机以引入漏洞为代价运行应用程序。2) 图灵完备人工智能编程语言的停机问题可能导致 AGI 势不可挡。在传统系统下,这些固有弱点的双重打击仍然是不可战胜的。最近的网络安全突破表明,禁止所有权限可将计算机攻击面降至零,从而提供一种新的零漏洞计算 (ZVC) 范式。本文通过部署 ZVC 和区块链,制定并支持一个假设:“通过征服两个不可攻克的可计算性规则,安全、可靠、合乎道德、可控的 AGI/QC 是可能的。”在欧洲财团的推动下,当 AGI/QC 到 2025 年开始为 750 亿台互联网设备提供支持时,测试/证明提出的假设将对未来的数字基础设施产生突破性的影响。
肖恩·威廉姆斯上校目前是科罗拉多州丹佛市联邦紧急事务管理局第八区的国防协调官。他最近担任驻埃尔门多夫-理查森联合基地的美国阿拉斯加陆军参谋长。在此之前,他担任位于德克萨斯州圣安东尼奥联合基地的美国陆军设施管理司令部参谋长。此前的其他职务包括指挥阿拉斯加州美国陆军驻阿拉斯加韦恩赖特堡基地;美国陆军第 38 任参谋长副执行官;第 101 空降师 (空中突击) 第 2 旅战斗队特种部队营,包括部署猛禽小队担任库纳尔阿富汗制服警察的顾问;第 10 特种部队大队 (A) 执行官;第 2 营的 S3 和第 10 特种部队大队 (A) 的 S3,在伊拉克自由行动 VII 期间担任联合特种作战特遣部队-阿拉伯半岛的副 J3;作为 OIF V 中特种作战特遣队 - 中央的一部分,指挥位于伊拉克巴格达的 0230 高级作战基地;OIF III 期间,指挥第 10 特种部队大队 (A) 总部和指挥部,并领导联合特种作战特遣队-阿拉伯半岛支援中心;指挥特种部队作战支队 - Alpha 061(OIF I)和 066(OIF II),后来担任高级作战基地 060(OIF II)的连队 XO;第 10 特种部队大队(空降)(SFG(A));德国斯图加特欧洲特种作战司令部指挥官副官,参加了 NOBLE ANVIL 行动;德国弗里德贝格第 1 装甲师 4-67 装甲团(后更名为 1-37 装甲团),他在该团担任坦克和侦察排排长,并在联合奋战行动期间在波斯尼亚第 3-5 骑兵团担任机械化步兵排排长。
摘要:将鞭毛(将二键均稳定于放射性衰减中,纳入新材料中,可以创造出诸如永久磁性,超导性和非平凡拓扑的新兴特性。了解驱动BI反应性的因素对于实现这些特性至关重要。使用压力作为可调的合成载体,我们可以访问未开发的相空间区域,以促进不在环境条件下反应的元素之间的反应性。此外,在高压下发现材料发现的计算方法和实验方法比单独实验可以实现对热力学景观的更广泛的见解,从而使我们了解我们对主导化学因子控制结构形成的理解。在此,我们报告了我们对MO- BI系统的组合计算和实验探索,以前尚无二元金属间结构。使用从头算随机结构搜索(AIRSS)方法,我们确定了0-50 GPA之间的多个合成目标。高压原位粉末X射线X射线差异实验在钻石砧细胞中进行的确认,在施加压力时,Mo-bi-bi混合物在35.8(5)gpa的35.8(5)gpa时表现出丰富的化学作用,包括计算预测的Cual 2-Type MOBI 2结构。电子结构和声子分散计算表明,价电子计数与高压过渡金属 - BI结构中的键合以及识别两个动态稳定的环境压力符号。■简介我们的研究证明了合并的计算方法 - 实验方法在捕获高压反应性发现高压反应性方面的功能。
2015年,Drozdov及其同事报告了硫化硫化物中的高温超导性[1]。通常认为结果是真实的[2-7]。依赖,黄和同事测量了硫磺氢的AC磁敏感性[8],并且在外观上确定了超导性的存在。根据参考。[9],这项工作“为高压下超导性实验研究设定了新标准”。然而,我们最近认为,参考文献中提出的硫磺中支持超导性的实验证据。[1]并不令人信服[10],而参考文献中都没有提出。[11,12]关于Meissner效应[13,14]。在本文中,我们认为参考文献的AC敏感性测量值。[8]也没有支持硫化硫化物中超导性的支持。到目前为止,尚无其他对AC磁敏感性的研究或硫氢的其他磁性性能。AC磁化率是高压下材料超级电导率的优越测试[15-20]。超导体排除了磁通量,因此在冷却到超导状态后会观察到AC磁敏感性的急剧下降。因此,习惯是根据关系进行高压的实验,因为钻石砧细胞的几何形状所需的样本较小,检测到的信号是由于样品的叠加和背景磁反应的叠加而产生的很大的信号,背景信号的数量高于样品信号的几个阶数[15,16,18,18,20]。
摘要:到目前为止,A15 NB 3 Si是在高压(〜110 GPA)下产生的唯一“高”温度超导体,该温度已成功地将其带回了在亚稳态条件下的房间压力条件。基于当前的极大兴趣,他们试图在高压下产生的室压高温超导体,我们重新爆炸地压缩了A15 NB 3 SI及其从Tetragonal NB 3 Si产生的生产。首先,在爆炸性压缩的A15 NB 3 Si材料上进行了高达88 GPA的钻石砧细胞压力测量,以跟踪T C作为压力的函数。t c在88 GPA时被抑制至〜5.2 k。然后,使用A15 NB 3 Si的这些T C(P)数据,在室温下(在5 K时在5 K时升高到120 GPa)在四方NB 3 Si上施加了高达92 GPA的压力。电阻率的测量结果没有任何A15结构产生的迹象。 e。没有A15 NB 3 Si的超导特征的迹象。这与四方NB 3 Si的爆炸性压缩(高达P〜110 GPA)相反,后者在1981年的Los Alamos国家实验室实验中产生了50-70%A15材料,在环境压力下T C = 18 K。这意味着由于爆炸性压缩而引起的伴随的高温(1000 O C)对于成功驱动四方的反应动力学是必不可少的。我们的理论计算表明,A15 NB 3 Si具有焓和四方结构,在100 GPa时为70 MeV/AtoM较小,而在环境压力下,四方相的焓低于A15相位的A15相位为90 MEV/ATOM。事实是,在室温下“退火”了A15爆炸性压缩材料39年没有效果表明,缓慢的动力学可以在很长一段时间内在环境条件下稳定高压亚稳态,即使对于90 MEV/原子的大驱动力也是如此。
课程(截至2024年3月)Giovanni Hearne教授(ORCID ID:0000-0002-1662-7831)物理系,约翰内斯堡大学(UJ)物理学小组教授Mössbauer和高压研究实验室的高压研究实验室和高压力研究实验室的职位和高压研究实验室的职位:GQEBERHA-SA:GQEBERHA:15 3月15日,:++ 27-11-5593849 / ++ 27-1-7268999953电子邮件:grhearne@uj.ac.ac.ac.za Scientific Carecolific Carecolific Carecutific Carecutific 2012年至今:物理学教授,约翰内斯堡大学,约翰内斯堡大学,约翰内斯堡大学,约翰内斯堡,约翰内斯堡,约翰内斯堡,2009-2009-2009-2012: 2007-2009:萨罗尼亚州约翰内斯堡的威特沃特斯兰大学物理学学院的读者兼副教授。1995-2006:萨利亚州约翰内斯堡的威特沃特斯兰大学物理学学院的讲师兼讲师和高级讲师。1992-1994:以色列电视大学高压研究小组物理与天文学学院博士后副学院。1993:博士(物理),威特沃特斯兰大学,约翰内斯堡,萨。 “通过使用119snMössbauer光谱法的Sn-Base A15超导体的晶格动力学”。 奖学金和科学输出NRF评估和评级:B2(截至2023年1月)研究兴趣实验性凝分物理物理。 57FeMössbauer效应光谱在可变的低温温度(低至1.5 K)和高压(最多1兆巴)处。 高压物理学(钻石和宝石细胞,DAC和GACS)。 在高压下,激光光谱,XRD,电气传输和基于同步加速器的技术(XAS)。 CO 2在DAC中加热。 仪器物理(电子)。1993:博士(物理),威特沃特斯兰大学,约翰内斯堡,萨。“通过使用119snMössbauer光谱法的Sn-Base A15超导体的晶格动力学”。奖学金和科学输出NRF评估和评级:B2(截至2023年1月)研究兴趣实验性凝分物理物理。57FeMössbauer效应光谱在可变的低温温度(低至1.5 K)和高压(最多1兆巴)处。高压物理学(钻石和宝石细胞,DAC和GACS)。激光光谱,XRD,电气传输和基于同步加速器的技术(XAS)。CO 2在DAC中加热。仪器物理(电子)。晶格 - 动力学,超导性,磁性,磁电(绝缘子 - 金属和旋转状态)过渡(在强相关的电子系统SCES中),材料科学。参与与应用,工业和生物分子物理学有关的许多研究项目。197 AU(Gold)Mössbauer-septrect光谱法。出版物80篇在同行评审的国际期刊中的文章,H-Index是22,〜1800引用(Scopus)。在国际会议上进行了几次邀请演讲。Google Scholar:https://scholar.google.com/citations?hl = en&user = m75pwraaaaaj学生和DOCS学生和DOCS 6博士学位论文和7个MSC论文受到监督。在国内和国际上的多个博士学位和MSC论文的外部考官。主持了几位博士后研究人员,1997年最新(英国,中国,塞内加尔,意大利语,法语,印度)。南非物理研究所的成员。国际高压科学技术协会(AIRAPT)的成员,http://www.airapt.org/顾问IUCR高压委员会,http://highpressure.iucr.iucr.org/ http://highpressure.iucr.org/正常审查物理学,物理综述,材料,物理综述,杂志,物理综述,杂志,材料,杂志,杂志,杂志,杂志,杂志,杂志,杂志,杂志,杂志应用物理学。偶尔的基础:科学,Physica-B,Europhysics Letters,Interlallics,Applied Physics Letters。
让您更接近您所爱的人和事物。— 来自 Facebook 的 Instagram 与朋友联系,分享您的最新动态,或查看来自世界各地其他人的最新消息。探索我们的社区,在这里您可以自由做自己,分享从日常时刻到生活亮点的一切。表达自我并与朋友联系* 向您的 INSTA 故事添加 24 小时后消失的照片和视频,并使用有趣的创意工具让它们栩栩如生。* 在 Direct 中向您的朋友发送消息。开始关于您在 Feed 和 Stories 上看到的内容的有趣对话。* 将您想要在个人资料中显示的照片和视频发布到您的 feed。了解更多关于您的兴趣* 查看 IGTV,观看您最喜欢的 INSTA 创作者的长视频。* 在探索中从新的 INSTA 帐户中获得灵感。* 发现品牌和小型企业,购买与您的个人风格相关的产品。让您更接近您所爱的人和事物。— 来自 Facebook 的 Instagram 与朋友联系,分享您的最新动态,或查看来自世界各地其他人的最新消息。探索我们的社区,在这里您可以自由做自己,分享从日常时刻到生活亮点的一切。表达自我并与朋友联系* 将照片和视频添加到您的 INSTA 故事中,这些照片和视频会在 24 小时后消失,并使用有趣的创意工具让它们栩栩如生。* 在 Direct 中向您的朋友发送消息。开始关于您在 Feed 和 Stories 上看到的内容的有趣对话。* 将您想要在个人资料中显示的照片和视频发布到您的 feed。了解更多关于您的兴趣* 查看 IGTV,观看您最喜欢的 INSTA 创作者的长视频。* 从探索中的新 INSTA 帐户的照片和视频中获取灵感。* 发现品牌和小型企业,并购买与您的个人风格相关的产品。让您更接近您所爱的人和事物。— 来自 Facebook 的 Instagram 与朋友联系,分享您的最新动态,或查看来自世界各地其他人的最新消息。探索我们的社区,在这里您可以自由做自己,分享从日常时刻到生活亮点的一切。表达自己并与朋友联系* 将 24 小时后消失的照片和视频添加到您的 INSTA 故事中,并使用有趣的创意工具让它们栩栩如生。* 在 Direct 中向您的朋友发送消息。开始关于您在 Feed 和 Stories 上看到的内容的有趣对话。* 从探索中的新 INSTA 帐户的照片和视频中获取灵感。谁在使用它?* 将您想要在个人资料中显示的照片和视频发布到您的 Feed。了解有关您兴趣的更多信息* 查看 IGTV,获取来自您最喜爱的 INSTA 创作者的较长视频。* 发现品牌和小型企业,并购买与您的个人风格相关的产品。Coronavirus.Politologue.com © un site de Politologue.com- Toutes les données affichées sur le site vous sont proposées à des fins statistiques et à titre d'information -- Elles proviennent toutes de données publiques disponibles en OpenData - - 0 ,23 秒 - Findchips Pro 将分散的数据源整合到一起单一平台,可为您最具战略意义的问题提供准确且符合上下文的答案。它使组织每次都能做出正确的工程或采购决策。缩小视图,查看更大的图景,或聚焦前所未有的精细数据。工程师 高管 采购 采购副总裁和总监 您的浏览器不支持视频标签。在您输入组件列表几秒钟后,Findchips Pro 会将汇总价格和库存显示到一个可操作的仪表板中。360 度查看相关市场信息对你的组织来说重要的组件可以实现更好的优先排序和更明智的决策。