鉴于人工智能开发人员在确保人工智能系统、其成果和此类系统用户的责任方面发挥着重要作用,我们需要他们采取负责任、合乎道德和负责任的方法。因此,我们建议这些参与者参与旨在产生负责任的人工智能设计和使用的政策制定过程。根据我们的实证研究结果,我们提出了几项建议,以弥补当前在追求负责任的人工智能时将道德原则、认证标准和解释方法作为问责机制所发现的缺陷。我们希望这些建议能够有助于讨论如何在实践中确保问责制,同时兼顾开发人员、研究人员和公众的观点。
主题:新的 QWeb 应用程序访问方法 亲爱的大家, 我们特此通知您,自 2022 年 11 月 21 日起,根据 INPS 机构的规定并在已签署的 2022-2023 年两年期协议中表明,所有 CAF 都必须采用基于所谓的双因素系统 (2FA) 或第二次授权身份验证(通过电子邮件通知、手机上的二维码)的处理系统和程序访问系统;这是为了阻止未经授权的用户,以遵守公共管理部门关于隐私的规定。正如所示,以上内容是公共行政部门 (INPS) 实施的 INPS 协议 (第 10 条) 中预见和指出的一项规定。因此,为了遵守 INPS 协议中规定的指示,从 2022 年 11 月 21 日起,为了访问 QWB zucchetti 程序,该软件公司根据上述方法实施了一个全新的双因素访问系统,以允许所有运营商从 2021 年 11 月 21 日起通过个人用户/运营商的手机访问该程序。国家总局已准备好并附在本文件中的操作说明,以便下载必要的应用程序(Q-ID APP)以从 2022 年 11 月 21 日起访问 Qweb 程序。重要提示:从 2022 年 11 月 21 日起,将不再能够仅使用当前使用的密码访问 Qweb zucchetti 程序;因为密码访问系统将在同一天被取消。因此,邀请所有运营商采取紧急行动,下载 Q-ID APP,按照附件中的说明进行操作。国家总局仍可提供进一步澄清。
摘要 本教程将讨论数据中心/服务器以及 AI 和机器学习系统中使用的 48V 至 0.7V (2,000A) 电源转换器所面临的挑战和解决方案。将讨论和比较两种电源架构。第一种架构是两级架构,其中 48V 转换为 12V(或另一个中间电平),然后将 12V 转换为 0.7V。第二种架构是“单级”,其中 48V“直接”转换为 0.7V。使用“直接”转换架构,无法访问(可见)中间电压总线。在简要介绍广泛应用于数据中心、服务器等的 OAM(OCP 加速器模块)的背景信息和功率要求之后,本教程将提供对降低功率损耗和提高功率密度的技术的新认识。本教程将首先回顾两级架构的最新技术并评估其优点和局限性。然后,本教程将回顾“单级”架构的最新技术并评估其优缺点。基于上述分析和回顾,本教程将提出并讨论 48V 至 0.7V(低至 0.3V)、2,000A(或更高)的应用研究方向,以实现极高的效率、极小的尺寸和电流共享、可扩展、快速动态响应等。
混凝土的硅酸盐水合物晶体 (2023) 《空气与废物管理协会杂志》,73 (1),第 40-49 页。Pap,J.,等人,使用机器学习对组织绩效进行建模
以及国防部信函第 2 和第 3 段):国务卿确认,申请人指定代表的职责包括就国防部的机密意见是否 (i) 提出实质性规划考虑和 (ii) 满足《2008 年规划法》第 95A(1) 节中的测试提出意见。此外,按照 IPR 第 5(5) 段规定的相同方式,指定代表还可以就其任何职能向法院提出申请。
Vz@k|x$]5_,UiUdUiUdUdUdUiUiUdUiUdUiUiUdUiUdUdUdUiUiUdUiUdUiUiUdUiUdUiU{UiUiUdUiUdUiUiUdUiUdUiUiU{UiUdUiUdUiUiUdUiUdUiUiUdUdUdUiUdUiUiUdUiUdUiUiUdUiU{UiUdUiUiUdUiUdUiUiUdUiUdUdU
摘要 带隙工程是开发光电器件的关键方法,特别是对于近红外 (NIR) 应用,其中精确控制材料的电子和光学特性至关重要。本研究探讨了三种 III-V 半导体合金——砷化镓锑 (GaAsSb)、砷化镓锑氮化物 (GaAsSbN) 和砷化镓铝 (GaAlAs)——在定制带隙以满足 NIR 器件特定需求方面的潜力。GaAsSb 通过调整锑含量提供可调带隙,使其成为 NIR 光电探测器和激光二极管的多功能材料。GaAsSbN 中的氮进一步降低了带隙,增强了其对长波长应用的适用性,并提供与 GaAs 基板更好的晶格匹配。GaAlAs 以其稳定性和与 GaAs 的兼容性而闻名,可用于形成异质结和量子阱,从而实现高效的载流子限制和发射控制。通过改变这些合金的成分,工程师可以实现精确的带隙调节,从而优化一系列 NIR 波长范围内的器件性能。本摘要强调了成分变化、应变工程和量子阱设计在开发先进 NIR 光电器件中的重要性。尽管存在材料质量和热管理等挑战,但这些材料的持续改进对电信、医学成像和传感技术中的下一代 NIR 应用具有重要意义。简介 带隙工程是半导体技术中的一项基本技术,可以精确操纵材料的电子和光学