摘要。飞机燃气轮机发动机的开发已广泛用于开发高级材料。然而,这种复杂的开发过程是通过减少体重,更高的温度能力和/或降低冷却来证明的,每种都会提高效率。这是高温陶瓷取得了很大进步的地方,陶瓷基质复合材料(CMC)在前景中。CMC分为非氧化物和基于氧化物的CMC。两个家庭的材料类型具有很高的潜力,可以在高温推进应用中使用。典型的基于氧化物的基于氧化物纤维和氧化物基质(OX-OX)。一些最常见的氧化物子类别是氧化铝,绿地,陶瓷和氧化锆陶瓷。这样的基质复合材料例如在燃气轮机发动机和排气喷嘴的燃烧衬里中使用。然而,直到现在,尚未就此类应用的可用基于氧化物的CMC进行彻底的研究。本文着重于评估有关机械和热性能的可用氧化陶瓷基质复合材料的文献调查。
1。重组DNA技术:该技术允许对DNA进行操纵和分析,从而促进与疾病相关的特定遗传序列的鉴定。它可以产生可以与样品中的互补序列杂交的DNA探针的产生,从而有助于检测病原体或突变。2。聚合酶链反应(PCR):PCR是一种强大的方法,可扩增少量的核酸,从而可以检测到低浓度的细菌和病毒。该技术对于在症状表现之前识别病原体特别有价值,因为即使以微量量存在,也可以扩增特定的DNA或RNA序列。PCR通常用于肿瘤学来检测与癌症相关基因的突变,对于诊断可疑艾滋病患者的HIV至关重要。3。酶连接的免疫吸收测定法(ELISA):ELISA是基于抗原抗体相互作用的原理。它可以通过鉴定抗原(例如蛋白质或糖蛋白)或响应于
“分离科学:高级色谱技术和应用”探究了复杂的色谱世界,这是一种在许多科学学科中使用的重要分析技术。这本综合书籍旨在迎合新手学习者和经验丰富的从业者,对色谱法的原理,方法和尖端应用提供深入的了解。在其核心上,色谱是一种强大的方法,用于分离,识别和量化混合物中的组件。“分离科学”精心涵盖了控制色谱过程的基本原理,为读者提供了对各种色谱技术至关重要的基本吸附,分区和离子交换基本机制的坚实基础。这本书的结构是指导读者通过色谱的进行性探索。它首先是对色谱的历史发展的介绍,从简单的纸色谱法到成熟的高性能液相色谱(HPLC)和气相色谱法(GC)技术的发展。这种历史背景不仅突出了该领域的进步,而且强调了现代科学研究中关键作用色谱作用。在随后的部分中,本书深入研究了不同类型的色谱法。详细探讨了每种类型,包括液相色谱,气相色谱,薄层色谱(TLC)和亲和色谱法。本书的很大一部分专门用于高级色谱技术。清楚地解释了每种技术背后的原理,重点是分析物与固定阶段和移动阶段之间的相互作用。本节具有详细的插图和图表,可以增强读者对复杂概念的理解。它涵盖了最近彻底改变该领域的创新和技术进步。主题,例如超高液体色谱(UHPLC),二维色谱法以及色谱与质谱(LC-MS和GC-MS)的整合。这些高级技术具有实用的见解,包括对提示和最佳实践进行故障排除,以优化分离效率和解决方案。“分离科学”还强调了色谱在各个行业中的实际应用。本书探讨了如何用于药物开发和质量控制的药物色谱法,环境科学进行污染物分析,食品和饮料行业,以确保安全性和真实性以及用于蛋白质和肽分析的生物技术。案例研究和现实世界的例子说明了色谱法对解决复杂的分析问题的影响,突出了其在科学研究和行业中的不可或缺性。此外,该书解决了色谱中的未来趋势和挑战。它讨论了提高色谱方法的速度,灵敏度和选择性的持续努力。的新兴区域,例如绿色色谱法,该区域的重点是减少色谱过程的环境影响。“分离科学:高级色谱技术和应用”是化学,生物化学和相关领域的学生,研究人员和专业人员的重要资源。对色谱的理论和实践方面的透彻覆盖范围,对于那些寻求掌握这种基本分析技术的人来说,它是一个有价值的参考。与历史观点,详细的技术内容和实用应用见解相结合,本书是色谱学动态和不断发展的领域的综合指南。
SL No. 内容1。 一目了然的部门2。 Vision&Mission3。 部门4. 提供的程序5。 教师资料6。 研究的推力区域7。 研究项目8。 基础架构和学习资源9。 研究设施10。 扩展活动11。 研讨会/会议组织12. 壁外讲座13。 由老师赢得的奖项14。 由学生赢得的奖项15。 研究出版物16。 研究的协作活动17。 校友18。 最佳实践19。 印刷和电子媒体的部门20。 未来计划21。 照片库SL No.内容1。一目了然的部门2。Vision&Mission3。部门4.提供的程序5。教师资料6。研究的推力区域7。研究项目8。基础架构和学习资源9。研究设施10。扩展活动11。研讨会/会议组织12.壁外讲座13。由老师赢得的奖项14。由学生赢得的奖项15。研究出版物16。研究的协作活动17。校友18。最佳实践19。印刷和电子媒体的部门20。未来计划21。照片库
摘要 - 专门的深度学习(DL)加速器和神经形态处理器的出现为将深度和尖峰神经网络(SNN)算法应用于医疗保健和生物医学应用的新企业带来了新的机会。这可以促进医学互联网系统(IoT)系统和护理点(POC)设备的进步。在本文中,我们提供了一个教程,描述了如何使用各种技术,包括新兴的回忆设备,可编程的门阵列(FPGA)和互补的金属氧化物半导体(CMOS),可用于开发有效的DL加速器,以解决各种诊断诊断,模式识别的诊断,信号过程和信号过程中的各种问题。此外,我们探讨了尖峰神经形态处理器如何补充其DL对应物以处理生物医学信号。该教程通过应用于医疗保健领域的大量神经网络和神经形态硬件的大量文献进行了研究。我们通过执行将传感器融合信号处理任务与计算机视觉相结合的传感器融合信号处理任务来标记各种硬件平台。在推理潜伏期和能量方面进行了专用神经形态处理器和嵌入AI加速器的比较。最后,我们对领域的分析进行了分析,并分享了各种加速器和神经形态处理器引入医疗保健和生物医学领域的优势,缺点,挑战和机遇的观点。
摘要如今,医疗和药物领域的快速改善增加了药物的多样性和使用。然而,诸如在疾病治疗中使用多种或联合药物的问题以及对非处方药的无敏使用的问题引起了人们对药物的副作用概况和治疗范围以及由于药物浪费而引起的副作用概况和治疗范围。因此,对各种培养基(例如生物学,药物和环境样本)中药物的分析是讨论的重要主题。电化学方法对于传感器应用是有利的,因为它们的易于应用,低成本,多功能性,高灵敏度和环保性。碳纳米材料,例如钻石样碳薄膜,碳纳米管,碳纳米纤维,氧化石墨烯和纳米原子石用于增强具有催化作用的电化学传感器的性能。为了进一步改善这种效果,它旨在通过将不同的纳米材料一起或与导电聚合物和离子液体等材料一起使用不同的碳纳米材料来创建混合平台。在这篇综述中,最常用的碳纳米型将根据电化学特征和理化特性进行评估。此外,将在过去五年中对最新研究中对电化学传感器的最新研究产生的影响进行检查和评估。
上一次SOCTA会议在以下场所成功组织:SOCTA2016:印度斋浦尔的Amity University Rajasthan。(2016年12月28日至30日)SOCTA2017:印度北方邦的Bundelkhand University Jhansi。(2017年12月22日至24日)SOCTA2018:印度旁遮普邦Jalandhar的B R Ambedkar Nit博士。(2018年12月21日至23日)SOCTA2019:印度比哈尔邦巴特纳国家理工学院国家理工学院。(2019年12月27日至29日)SOCTA2020:在虚拟模式下(由于大流行19)。(2020年12月25日至27日)SOCTA2021:印度印度信息技术研究所,印度。(2021年12月17日至19日)SOCTA2022:喜马al尔邦大学Summerhill,印度西姆拉。(2022年12月16日至18日)SOCTA2023:印度印度信息技术研究所UNA,印度。(12月24日至26日,2023年)第9系列,SOCTA2024在印度拉贾斯坦斋浦尔国家理工学院(MNIT)在印度斋浦SOCTA2024是在印度旁遮普邦Jalandhar的B R Ambedkar Nit博士的技术合作中组织的; Shobhit认为大学Meerut和科学,技术,工程与管理(STEM) - 研究学会。会议有5个主题演讲,由来自世界各地的著名院士和从业人员发表。总的来说,在18个口头演讲会议上介绍了12个不同的会议不同主题的技术论文。我们感谢Springer Plc。给我们机会在网络和系统(LNNS)中发表诉讼的机会。我们真诚地感谢您持续的支持,鼓励和信任我们。提交给SOCTA2024的所有论文都经历了同行评审过程,随后进行了修订,然后最终被接受。SOCTA系列成功的荣誉,请参阅我们的导师,主题演讲和邀请演讲者,首席嘉宾,荣誉嘉宾,顾问委员会成员,顾问委员会(国家与国际),计划委员会成员,Springer团队作为出版伙伴(特别是Aninda Bose,特别是Aninda Bose,尤其是执行编辑 - 跨学科应用科学委员会;我们也期待在即将到来的SOCTA系列中获得这种出色的支持。我们很高兴通知您,SOCTA系列中的下一个,即SOCTA 2024计划在印度的Mnit斋浦尔拉贾斯坦邦。期待在SOCTA系列中做出重大贡献……
制造技术是一个不断发展的领域,不断地融合新的迭代和创新,为当今的制造商创造令人兴奋的新机会,并为进步打开了大门。制造业在加工高精度,尺寸准确性,复杂的几何形状和更好的表面饰面的高级材料方面面临着挑战,从而导致制造业的重大转变。具有微特征的微型组件的需求在行业中也日益增加。要应对这些工业挑战,尤其是在“自我依赖印度”的时代,工程专业的学生需要了解研究人员本身的各种先进的制造技术及其特定应用。印度政府的“印度制造”运动是将该国视为全球制造中心。拟议的在线短期课程的目的是与参与者分享高级制造业领域的发言人,用于具有即时工业应用的产品,以“ Atma Nirbhar Bharat”的直接工业应用程序进行/观察到。演讲者是外国大学,IIT,NIT,CFTI和其他知名机构的杰出研究学院。
可用 SOSMAG GEO-Kompsat-2A GEO(东经 128°) 2018 10 年 NGRM EDRS-C GEO(东经 31°) 2019 10 年 NGRM Sentinel-6 LEO(1336 公里,i = 66°) 2020 7 年 NGRM MTG-I1 GEO(0°) 2022 8.5 年 ICARE-NG HOTBIRD 13F GEO(东经 13°) 2022 10 年 ICARE-NG HOTBIRD 13G GEO(东经 13°) 2022 10 年 NGRM MTG-S1 GEO(0°) 2024 8.5 年 NGRM Metop-SG A1 LEO(~830 公里,SSO) 2024 7 年 NGRM Metop-SG B1 LEO(~830 公里,SSO) 2025 7 年 NGRM MTG-I2 GEO (0°) 2025 8.5 年 MiniRMU 月球探路者月球(椭圆形) 2025 8 年 ERSA 月球门户月球(NRHO) 2025 5 年以上
