随着采用压缩光的引力波探测器的出现,量子波形估计(通过量子力学探针估计时间相关信号)变得越来越重要。众所周知,量子测量的反作用限制了波形估计的精度,尽管这些限制原则上可以通过文献中的“量子非破坏”(QND)测量装置来克服。然而,严格地说,它们的实现需要无限的能量,因为它们的数学描述涉及从下方无界的哈密顿量。这就提出了一个问题,即如何用有限能量或有限维实现来近似非破坏装置。在这里,我们考虑基于“准理想时钟”的有限维波形估计装置,并表明由于近似 QND 条件而导致的估计误差随着维度的增加而缓慢减小,呈幂律。结果,我们发现用这个系统近似 QND 需要很大的能量或维数。我们认为,对于基于截断振荡器或自旋系统的设置,预计该结果也成立。
摘要:近似计算技术(ACT)是实现减少能量,时间延迟和硬件大小的有希望的解决方案,用于嵌入式机器学习算法的实现。在本文中,我们介绍了使用高级合成(HLS)的算法级别的近似张力支持向量机(SVM)分类的第一个FPGA实现。采用了触摸模式分类框架来验证拟议实施的有效性。与最先进的实施相比,拟议的实施将功耗的速度降低了49%,加速度为3.2倍。此外,硬件资源减少了40%,同时消耗的能量减少了82%的能量,而精度损失小于5%。
数字电路和系统的高可靠性得益于多种方法。这些方法确保设计在规定的条件下和预计的使用寿命内发挥其功能。它们涵盖了与电子产品的制造和现场运行相关的不同方面。例如,洁净室控制杂质,工业控制系统实现生产一致性;封装前后的老化和测试确保在对电路施加应力后检测到设计弱点和制造缺陷。在将半导体推向市场之前,所有这些方法都是必要的,但它们并非万无一失。尽管小型化提供了许多优势,但每个新的 CMOS 节点都面临可靠性问题,因为这一趋势正在迅速接近操作和制造的物理极限 [1]。数字系统在其使用寿命的三个阶段可能会出现故障,如图 1 中的浴盆曲线所示 [39]。早期故障被称为早期死亡率;工作寿命期间发生随机故障,磨损故障
完全同态加密(FHE)是在加密数据上执行计算的强大工具。Cheon-Kim-Kim-Song(CKKS)方案是近似FHE的实例化,对于具有真实和复数的机器学习应用程序特别有效。al-尽管CKK具有明确的效率优势,但混乱始终围绕着准确描述图书馆中的应用,并安全地实例化了这些问题的计划,尤其是在Li和Micciancio(Eurocrypt'21)的关键恢复攻击之后,用于IND-CPA D设置。目前在IND-CPA D的应用程序不合时宜的,通用的定义以及软件库中CKK的高效,特定于应用程序的实例之间存在差距,这导致了Guo等人的最新攻击。(USENIX SECurity'24)。要缩小此差距,我们介绍了应用程序意识到的同构加密(AAHE)的概念,并设计了相关的安全性定义。该模型更紧密地与实践中的方案实施和使用的方式更加紧密,同时还可以识别和解决流行库中潜在的漏洞。然后,我们提供了一种应用程序规范语言(ASL),并制定指南,以实现AAHE模型,以实现CKKS实际应用的IND-CPA D安全性。我们在OpenFhe库中提出了ASL的概念证明实现,以显示Guo等人的攻击方式。可以反驳。更重要的是,我们表明我们的新模型和ASL可用于确切方案的安全有效实例化,并应对Cheon等人最近的IND-CPA D攻击。(CCS'24)和Checri等。(加密24)。
摘要 — 在本文中,我们建议使用模拟电路实现 S 型函数,该函数将用作多层感知器 (MLP) 网络神经元的激活函数,以及其近似导数。文献中已经提出了几种实现方法,特别是 Lu 等人 (2000) 的实现方法,他们提供了采用 1.2 µ m 技术实现的可配置简单电路。在本文中,我们展示了基于 Lu 等人的 S 型函数电路设计,使用 65 nm 技术以降低能耗和电路面积。该设计基于对电路的深入理论分析,并通过电路级模拟进行验证。本文的主要贡献是修改电路的拓扑结构以满足电路所需的非线性响应以及提取所得电路的直流功耗。索引词——激活函数、模拟 CMOS 电路、近似导数、反向传播、多层感知器、S 型函数。
摘要 - 软马克斯函数用作放置在神经网络输出层中的激活函数。它允许提取输出类的概率,同时向模型引入非线性。在低端FPGA领域,深神经网络(DNN)的实现需要探索优化技术,以提高计算效率和硬件资源消耗。这项工作探讨了使用Taylor和Pad'E近似方法以及带有查找表(LUTS)的插值方法来促进软效果的近似计算技术。引入近似值旨在减少所需的执行时间,同时降低SoftMax函数产生的结果的精度。使用均方根误差(RMSE)评估每个实现,以进行准确评估,并通过测量执行时间来验证个人绩效。从我们的评估中,使用LUTS的二次插值实现了最低的错误,但是在性能方面,泰勒和垫子近似显示了更好的执行时间,这突出了数值准确性和功耗之间的现有设计权衡。索引项 - 评估计算,高级合成,推理算法,神经网络压缩,多层感知器。
1。它可以为多阶段培训管道(例如,基础模型和持续学习)提供TDA分析。2。它可以将算法选择纳入分析中(例如SGD与Adam)。3。即使隐式分化假设失败(例如,非构成参数),它也保持与反事实预测的密切联系。•与以前的展开方法不同,来源可以实现这些好处,同时仅需要少量的模型检查点C(例如,C = 5),而不是存储整个训练轨迹。
在[1,7]中的时间依赖性通过截短的傅立叶膨胀来处理,这使我们能够为每个频率获得单独的线性系统。在那里,提出了有效的求解线性系统的预处理方法,其中预核心是具有区块 - diagonal的,并且是较低的三角形形式。在[2]中使用了完整的两二个块结构的预处理,进一步称为PRESB,在续集中定义。[3]中的研究提供了不同结构的预处理(遮挡型,块 - 三角形和PRESB形式)之间的比较。比较是根据相应预处理矩阵及其数值性能的光谱正确的。数值实验表明,相对于正则化参数的频率范围,问题大小和值,PERB形式的预处理更加健壮。可以在[10]中找到对这些预调节器和一些修改形式的信息。[9]研究中的工作又是块形式形式的另一个预处理,并分析了双重预处理,适合于离散状态的向量形式。在[8]中考虑了(2)的非线性形式,其中为线性化问题提出了完整的两乘两块形式的预处理,可以将其分解和解决,以块 - 二进制预处理的成本,并且相对于问题大小和测试频率的范围是可靠的。
酉 t 设计是酉群上的分布,其前 t 矩看起来最大程度地随机。先前的研究已经建立了某些特定随机量子电路集合近似 t 设计的深度的几个上限。在这里,我们表明这些界限可以扩展到任何固定的 Haar 随机双站点门架构。这是通过将此类架构的光谱间隙与一维砖砌架构的光谱间隙联系起来实现的。我们的界限仅通过电路块在站点上形成连通图所需的典型层数取决于架构的细节。当这个数量有界时,电路在最多线性深度中形成近似 t 设计。我们给出了更强的界限的数值证据,该界限仅取决于架构可以划分成的连接块的数量。我们还根据固定架构上相应分布的属性给出了非确定性架构的隐式界限。
“确保并推动到 2030 年,通过具有生态代表性、连接良好和公平管理的保护区网络以及其他有效的区域保护措施,至少 30% 的陆地和内陆水域以及沿海和海洋区域,特别是对生物多样性和生态系统功能和服务特别重要的区域,得到有效保护和管理。酌情承认土著和传统领土,并将其纳入更广阔的景观、海景和海洋,同时确保在这些地区任何可持续利用均与保护成果完全兼容,承认和尊重土著人民和当地社区的权利,包括在其传统领土内的权利”。