在本文中,我们以鲑鱼基因组编辑为例,提出了可持续性评估框架的建议。鲑鱼养殖业面临着阻碍可持续生产的若干挑战。基因组编辑已成为一种可以改善水产养殖中选择性育种和饲料成分的工具,从而提供解决方案,例如抵抗鲑鱼虱子和其他病原体,以及减少与野生濒危种群杂交的不育性。由于水产养殖的目标是其实践和产品有助于可持续发展,因此也需要根据可持续性来评估基因组编辑的使用。在我们的工作中,我们利用了三个信息来源:政府办公室和行业组织发布的战略和政策文件;相关的转基因法规和操作报告;以及来自 19 次半结构化访谈的定性实证数据,这些访谈对象是挪威主要利益相关者和四个半结构化公民团体。我们分析的结果与斯德哥尔摩复原力中心基于联合国可持续发展目标和可持续发展的三大支柱:生物圈、社会和经济开发的可持续发展婚礼蛋糕模型有关。对文档和访谈数据的分析得出了三个主要发现,每个可持续性支柱中都有一个。首先,我们发现生物圈支柱(包括保护环境和野生鲑鱼)是主要的可持续性问题,因此对于评估水产养殖业的可持续性以及可能引进基因组编辑鲑鱼非常重要。其次,社会支柱应包括文化和自然资源的保护,在挪威的背景下,这包括保护萨米文化对野生鲑鱼种群的依赖。第三,经济支柱需要包括动物福利,以提高养殖效率和道德责任。根据当地和国家条件以及所讨论的鱼类物种,同一框架可用于一般基因组编辑鱼类的可持续性评估。
尽管有可持续性,但在养殖鱼类中,选择性育种和饲料添加剂之间的协同作用仍然不足。参考(Ref)和选定的吉尔特黑头海bream生长(GS)在14天内用对照(CTRL)饮食喂食。ctrl饮食与三种功能添加剂(基于大蒜和中链脂肪酸的PHY:植物生成型; OA:有机酸混合物与70%的丁酸丁酸钠盐;概率:基于益生菌的有机酸混合物,益生菌,基于枯草菌,枯草脂,脓疱和licheniformes)。然后将这些实验饮食依次以高(PHY/OA = 7.5 g/kg,prob = 2×10 11 CFU/kg; 2周)和低(PHY = 5 g/kg,OA = 3 g/kg,prob = 3 g/kg,prob = 4×10 10 CFU/kg; 10 cfu/kg; 10周)。给定基因型和添加剂的能力来改变鱼类生长的性能,肠道健康以及宿主与其前肠(AI)微生物植物的相互作用。gs鱼显示出更好的生长和饲料转化率,与肠道微生物组成的个体变异性降低有关。PHY添加剂对GS-Phy鱼的肠道转录组有重大影响,并在上皮完整性,鞘脂和胆固醇/胆汁/胆汁盐代谢的上调上调。随着OA添加剂的增长性能,AI杯状细胞区域减少和AI粒细胞浸润的增强与中性粒细胞脱粒标记物的下调相关,与致病属的下降有关发酵和维生素K生物合成推断的途径。杆菌的建立和缺乏AI炎症在两个遗传背景的概率中平行。但是,GS鱼的生长和使用添加剂的饲料越来越好,而Ref Fish中出现了恶化。这种改善与硝酸盐还原kocuria的丰度,上皮细胞维持和增殖的标记的上调以及微生物群可调的蛋白质先素质和泛素化标记的下调有关,支持了上皮的较低的转离和改善的肠道范围。总的来说,吉尔特黑德海bream中营养创新的成功在很大程度上取决于宿主基因组易感性,也取决于肠道菌群cording to to Hologenome理论。
虾养殖目前是一个巨大的挑战,因为意外的疾病和商业饲料的价格上涨。基于发酵米麸的替代商业饲料的替代,对黑虎虾(Penaeus Monodon)的生长,免疫和存活率的替代,进行了这项研究,以评估水生蛋白培养技术的影响。水上培养池在路堤中使用高密度的聚乙烯衬里设计,以防止土壤侵蚀,并带有吸入泵的中央坑,以消除累积的培养物质,而传统的现有现有池塘则按照标准方法制备。液体发酵米麸(LFRB)在库存前用来生产食物。虾在三种处理中生长90天:T 0(对照):传统池塘中的100%商业饲料(CF),T 1:90%CF + 10%LFRB或T 2:70%CF + 30%LFRB在Aquamimicry Pond中,密度为10 PL/M 2。lfrb是通过在连续曝气下用枯草芽孢杆菌发酵24小时的24小时来制备的。在T 2(0.47 g天-1)中,虾的平均生长速率显着高于t 1(0.34 g天-1)或t 0(0.05 g天-1)。治疗中虾的存活率t 2(55±12%)和t 1(45±8%)高于治疗t 0。此外,基于从控制池中从水和虾的水和肝肝脏获得的细菌菌落形态,鉴定出了导致P. monodon早期死亡率综合征的致病菌株的弧菌。T 2处理中的虾具有更健康的肝癌,总血细胞计数明显高于T 0(2.5×10 3细胞ML -1)和T 1(2.5×10 3细胞ML-- 1))。这项研究表明,绿色老虎虾的生长,免疫力和生存率可以确保水生培养技术的更好,而70%CF + 30%LFRB(即T 2)表现出最佳性能。
i)较小的纪律课程(中):( 24/32学分)较小的纪律课程是指与主要学科相关 /专业 /选修课的主题。这些盟军课程有望在特定的集中领域中提供对主题的更多了解。,例如B.A.(政治学)学生应研究诸如公共行政的盟友,社会学,因为这些学科与主要的纪律学科有联系。ii)多学科课程(MLD):(9学分)所有本科生均被要求在此类多学科领域/课程中为9/10 NEP定义的科目中的9学学课程。大学可以根据资源和人力的可用性确定下面列出的任何3个多个纪律流。
3.1鱼类,繁殖场所,繁殖习惯和地方的繁殖,自然环境中的繁殖,人造池塘,求爱和生殖循环3.2.诱导的鱼类中繁殖3-3的繁殖,虾,牡蛎,牡蛎,麝香,麝香,蛤,lam,珍珠牡蛎,pila,pila,pila和cephalopods。单位-IV:开发4.1。鱼类的父母护理,卵形,产卵,卵巢性,巢穴,巢建筑和育雏4.2鱼类的胚胎和幼虫的发展4.3胚胎和幼虫的发展虾,养蜂,螃蟹,蟹肉和越来越多的环境因素的养殖和跨性别范围的生长量和壳体范围的生长态和壳体的发展和发展。1.1鱼类内分泌系统。1.2神经分泌细胞,雄激素,卵巢,色谱,1.3摩擦,摩擦阶段,甲壳类动物壳的变态
草鱼 10.5 X 鲢鱼 8.8 尼罗罗非鱼 8.3 XX 鲤鱼 7.7 X 鳙鱼 5.8 卡特拉鱼 5.6 鲫鱼 5.1 颜色 大西洋鲑鱼 4.5 X 颜色,脂肪酸代谢 条纹鲶鱼 4.3 南亚鲮 3.7 X 虱目鱼 2.4 鱼雷鲶鱼 2.3 虹鳟鱼 1.6 X 武昌鲷 1.4 青鱼 1.3 黄鲶 0.9 X 斑点叉尾鲶 - XXX 大型泥鳅 - 颜色 牙鲆 - X 太平洋蓝鳍金枪鱼 - 游泳行为 太平洋牡蛎 - 肌球蛋白功能 赤鲷 - X 白虾 - 几丁质酶功能 南方鲶鱼 - X 虎斑河豚 - X
al。,2016年)。的确,如果忽略了捕鱼工作和野生栖息地的管理,那么仅孵化场就不够了。实际上,最近的研究表明,与栖息地恢复配对时,孵化场可能至关重要(Taylor等人,2017年)。从根本上讲,水生环境中的生物栖息地恢复旨在直接或间接改善其他依赖于该栖息地的物种和/或生态系统特征。因此,这也是一种保护水产养殖。人为压力,例如过度捕捞,沿海发展和商品耕作,导致许多生物栖息地的降解,例如珊瑚(Kennedy等,2013),牡蛎床(Bagggett等人,2015年,2015年),Seagrass Meadows(Seagrass Meadows),Seagrass Meadows(Waycott等,2009年),SPALNGREDSS,2010年(SPALDISTS),2010年(Spands),2010年。
水产养殖取决于微生物,因为它们是自然存在的,并且可以目的添加以实现各种目的。此外,某些细菌可能会避免鱼类和幼虫免受疾病的侵害。因此,在水产养殖栖息地中测量和修改微生物种群至关重要,以提高水质并停止传染病的发展。在几年内,水产养殖系统可以有效地管理生态系统过程,并使用微生物种群监测水质。为了彻底了解有利的和不利的水产养殖系统,应彻底研究微生物体。,但是必须正确地开发和管理这些微生物。与此类似,使用益生菌来控制微生物组可能会减少对水产养殖中抗生素的需求。最近的研究表明,益生菌细菌可能会显着降低患病鱼幼虫的死亡率,并可以控制活饲料中的鱼类病原细菌。但是,缺乏对重要微生物相互作用的知识,这些系统的整体生态现在限制了水产养殖中微生物群的有效调节。水生自然环境的微生物种群迅速适应环境变化。这些变化可能是适度的,以某些代谢途径的激活或失活而出现,或者可能会对微生物群落的一般化妆和活动进行修改。一个水样品可用于研究基因组和转录组组成的组合[1-3]。现在,高通量测序(HTS)技术已经如此迅速地进步,可以使用全面的系统生物学策略来监测微生物水社区的变化。
预防疾病在水产养殖中至关重要,尽管疫苗提供了保护性免疫,但诸如成本和低疗效之类的挑战持续存在。本研究调查了植物来源的化合物(称为植物基因剂)的潜力,以增强疫苗对欧洲海豆中葡萄症的有效性。Two phytogenic blends, namely PHYTO1 (terpenes) and PHYTO2 (terpenes and flavonoids) were supplemented to a commercial diet to obtain three experimental diets: a non-supplemented control diet, PHYTO1 (a 200-ppm blend of garlic and Lamiaceae oils with 87.5 mg kg − 1 terpenes), and PHYTO2 (一种1000 ppm的混合物,含有柑橘类水果,星形科和lamiaceae油,配以57 mg kg -1萜烯和55 mg kg -1类黄酮)。在通过浴场接种疫苗后,将欧洲少年的海豆分成几组,并喂三种饮食中的一种30天。在此喂养期后,将鱼类麻醉并用单一剂量的疫苗通过Jection中的疫苗加强。他们继续将各自的饮食喂养30天。在第60天,在启动疫苗接种后,通过腹膜内注射将鱼类用颤音的a anguillarum挑战。在每次疫苗接种后在不同时间点测量各种参数,包括总重量,血浆皮质醇和葡萄糖水平,血清免疫球蛋白M(IGM)滴度,白细胞的抗氧化能力以及几种抗氧化剂和免疫降低基因的表达。结果表明,与对照组相比,用植物基补充剂喂养的鱼的体重没有差异。然而,它们表现出较低的血浆皮质醇和葡萄糖水平,增加IgM滴度以及增强的抗氧化剂保护和头肾leuco细胞的抗氧化能力。此外,每次疫苗接种后,植物基因在g和头部肾脏中上调了几个免疫相关基因。值得注意的是,富含类黄酮和萜烯的Phyto2通过减轻疫苗相关的应激,同时改善抗氧化剂保护并调节疫苗诱导的免疫反应,对增强鱼的阳性作用更为明显。疫苗接种的这种协同作用与植物学结合引入了新的途径,以增强水产养殖中的鱼类健康。