水产养殖是世界上发展最快的增长部门之一,目前亚洲为全球生产贡献了约90%。但是疾病暴发对水产养殖产量有限,从而影响该国的经济发展和亚太地区许多国家的当地人的社会经济地位。通过使用传统方法,合成化学物质和抗生素采用不同方法来实现水产养殖产业的疾病控制。使用这种昂贵的化学治疗剂来控制疾病,广泛批评其负面影响,例如残留物的积累,耐药性的发展,免疫抑制剂,消费者对用抗生素治疗的Aqua产品的偏好和传统方法的偏爱对大规模的水养系统中的新疾病无效。因此,需要开发替代方法来维持在那里的水产养殖系统中的健康微生物环境,以维持培养生物的健康。使用益生菌是这种方法在控制潜在病原体方面的重要性之一。本综述提供了选择潜在益生菌的标准,其在水产养殖行业中的重要性和未来观点。
青岛位于山东半岛南端,濒临黄海,因岸边有小青岛和古渔村青岛村而得名,是中国北方一座文化传统丰富、自然资源丰富的沿海开放城市,是中国重要的沿海中心城市、著名的旅游胜地、国际港口和历史文化名城,被评为中国最具生态竞争力城市之一。青岛市陆地面积1.1万平方公里,海域面积1.2万平方公里,辖7个区、3个县级市,常住人口1000多万,是著名的足球之城、影视之城、帆船之都,荣获2021中国最具幸福感城市、中国十大宜居城市等荣誉。这里也是海尔、海信、青岛啤酒、中车四方等知名品牌的所在地。
抽象的广泛和不受控制的塑料使用导致水生环境中大量塑料废物的积累,这为环境污染增加了一个新的维度,因为合成塑料很难降解。由于其特殊的代谢能力,微生物物种降解塑料的降解已成为潜在的环保对策。在本研究中,我们采用了shot弹枪宏基因组测序,对印度布拉马普特拉河沉积物中鉴定出的塑料降解基因进行了全面分析。在收集的沉积物样品中观察到塑料降解基因的四十个独特元素。结果表明,存在与不同类型的塑料(例如聚对苯二甲酸酯(PET),聚乙烯(PE),聚乙烯基醇(PVA)和聚苯乙烯(PS)的生物降解相关的潜在基因。在微生物中,假单胞菌假单胞菌细菌在所有采样位点占主导地位。进一步的映射预测了塑料降解酶的富集,例如聚酯酶,酯酶,去聚合酶和脱氢酶。塑料退化
i)较小的纪律课程(中):( 24/32学分)较小的纪律课程是指与主要学科相关 /专业 /选修课的主题。这些盟军课程有望在特定的集中领域中提供对主题的更多了解。,例如B.A.(政治学)学生应研究诸如公共行政的盟友,社会学,因为这些学科与主要的纪律学科有联系。ii)多学科课程(MLD):(9学分)所有本科生均被要求在此类多学科领域/课程中为9/10 NEP定义的科目中的9学学课程。大学可以根据资源和人力的可用性确定下面列出的任何3个多个纪律流。
尽管有可持续性,但在养殖鱼类中,选择性育种和饲料添加剂之间的协同作用仍然不足。参考(Ref)和选定的吉尔特黑头海bream生长(GS)在14天内用对照(CTRL)饮食喂食。ctrl饮食与三种功能添加剂(基于大蒜和中链脂肪酸的PHY:植物生成型; OA:有机酸混合物与70%的丁酸丁酸钠盐;概率:基于益生菌的有机酸混合物,益生菌,基于枯草菌,枯草脂,脓疱和licheniformes)。然后将这些实验饮食依次以高(PHY/OA = 7.5 g/kg,prob = 2×10 11 CFU/kg; 2周)和低(PHY = 5 g/kg,OA = 3 g/kg,prob = 3 g/kg,prob = 4×10 10 CFU/kg; 10 cfu/kg; 10周)。给定基因型和添加剂的能力来改变鱼类生长的性能,肠道健康以及宿主与其前肠(AI)微生物植物的相互作用。gs鱼显示出更好的生长和饲料转化率,与肠道微生物组成的个体变异性降低有关。PHY添加剂对GS-Phy鱼的肠道转录组有重大影响,并在上皮完整性,鞘脂和胆固醇/胆汁/胆汁盐代谢的上调上调。随着OA添加剂的增长性能,AI杯状细胞区域减少和AI粒细胞浸润的增强与中性粒细胞脱粒标记物的下调相关,与致病属的下降有关发酵和维生素K生物合成推断的途径。杆菌的建立和缺乏AI炎症在两个遗传背景的概率中平行。但是,GS鱼的生长和使用添加剂的饲料越来越好,而Ref Fish中出现了恶化。这种改善与硝酸盐还原kocuria的丰度,上皮细胞维持和增殖的标记的上调以及微生物群可调的蛋白质先素质和泛素化标记的下调有关,支持了上皮的较低的转离和改善的肠道范围。总的来说,吉尔特黑德海bream中营养创新的成功在很大程度上取决于宿主基因组易感性,也取决于肠道菌群cording to to Hologenome理论。
1 水产研究组(GIA),生态水研究所,拉斯帕尔马斯大学,35001 拉斯帕尔马斯,西班牙; luis.monzon@ulpgc.es (LM-A.); silvia.torrecillas@irta.cat (ST); antonio.gomez@fpct.ulpgc.es(AG-M.); jose.ramos@uneatlantico.es (JR-V.) 2 农业食品技术研究所 (IRTA) 水产养殖计划,圣卡莱斯德拉拉拉皮塔中心 (IRTA-SCR),43540 圣卡莱斯德拉拉拉皮塔,西班牙 3 欧洲竞技大学食品、营养健康研究组 9010 桑坦德,西班牙 4 北方大学生物科学与水产养殖学院基因组学系,8026 博德,挪威; jorge.galindo-villegas@nord.no * 通信地址:felix.acosta@ulpgc.es † 这些作者对这项工作做出了同等贡献。
抽象的水产养殖废水治疗是可持续水产养殖实践的关键方面,确保环境责任和资源保护。微生物通过促进有机物的分解和从废水中去除有害化合物,在此过程中起关键作用。本文探讨了微生物在水产养殖废水治疗中的各种作用,包括它们参与氮和去除磷,有机物分解以及病原体控制。各种基于微生物的治疗方法,例如生物过滤,微生物垫和建造的湿地,强调了它们在降低污染物并提高水质方面的效率。此外,解决了将微生物用于水产养殖废水处理的潜在挑战和前景,强调了研究和创新在开发可持续解决方案中的重要性。简介
需要新的策略来增强大西洋鲑鱼(Salmo Salar)饮食中植物成分的有效同化和生物转化,尤其是与必需的长链长链多不饱和脂肪酸(LC-PUFA)有关我们的研究研究了营养编程,并专门评估了使用三周的“刺激”与先前的研究相比,饮食“刺激”的最佳持续时间以及是否可以减少。鱼是一种实验性的“刺激”蔬菜饮食(V S,5%海洋餐[mm]/0%鱼油[FO])或一个基于海洋的标准基于海洋的对照(M S,82%mm/4%FO),用于一个(V1)或两周(V2)或两周(V2和M)。然后将所有组均给予标准的基于海洋的公式,以在第一次喂养后16周结束时进行“中间”长大阶段,然后在所有鱼类的“挑战”阶段之前,当所有鱼都均基于蔬菜的饮食(V C,10%mm/0%FO)。与M相比,在“刺激”阶段结束时,来自V1和V2组的FID均显着较小,但是在试验结束时,总体生长,近端或脂肪酸组成的总体生长没有统计学差异。然而,与V2鱼相比,V1的肝脏性和内脏指数明显降低,并且在整个“ interediate”和“挑战”阶段中,V1鱼的性能提高了总体趋势。在“挑战”阶段,M鱼的DHA净收益比V1鱼的净收益更大,而V2是同一时期所有N -3 LC -PUFA的净消费者。与M相比,在两个实验组中,幽门闭经中的N -3 LC-PUFA生物合成基因都被下调,表明在V1或V2中可能对该途径进行转录后修饰,考虑到组之间DHA保留水平的差异。综上所述,结果表明,营养编程不是由一或两周的“刺激”发起的。但是,需要更多的研究来阐明增强V1鱼的性能的机制。
根据其定义,人工智能(AI)是“从过去的碎片中建立的未来”。这些是通过实践获得新颖解决方案的应用。人工智能已用于从农业到全部行业自动化的各个学科。多亏了AI,水产养殖已成为一个劳动密集型的行业,使渔业部门能够迅速发展并迅速生产三倍。AI甚至可以用于保护水生生命类型免受灭绝的影响。AI监视全球捕鱼活动,并促进空中渔业的可持续性。AI在打击IUU捕鱼中起着重要作用。人工智能(AI)可用于水产养殖中,以限制输入废物,并将成本降低30%。因此,AI以较低的维护和投入成本提供了对鱼类生产系统的全面控制。EAI融入水产养殖已改变了该行业,使可持续增长,提高生产率和成本节省,同时最大程度地减少环境影响和劳动力需求。通过应用AI技术,水产养殖可以满足对海鲜的不断增长的需求,同时应对诸如过度捕捞,环境退化和资源稀缺等挑战。
摘要文章历史现代水产养殖面临着重大障碍,包括饲料中蛋白质来源的缺乏,感染的脆弱性以及在生长和存储期间的质量降解,尽管是增长率最高的行业。有益的细菌物种屏蔽了水生动物免受感染或停止产物的恶化,并且细菌生物量被认为是动物饲料的潜在蛋白质来源。本综述着重于这些细菌与水生产有关的营养,抗病原和免疫调节功能。此外,我们研究了宿主免疫,有益细菌和肠道菌群之间的联系,以及我们对宿主免疫和微生物互助的最新进展。该分析强调特定的微生物代谢产物,细菌成分和免疫系统。近年来,益生菌在水生动物中的作用引起了大量研究的关注。出现了各种发现,具有学术创新且实际上有帮助的潜力。有益细菌对水生生物的积极影响引发了广泛的研究,在水产养殖中的广泛使用以及创新的应用。对当前实践的未来改进将需要开发新的应用和相关的机械研究。关键词:益生菌,生长促进,鱼类,疫苗,免疫调节。