在这项工作中,我们证明,由于现有评估协议和数据集中的不足,因此有必要重新审视并全面研究Mul-timodal零射击学习(MZSL)问题问题。具体来说,我们解决了MZSL方法面临的两个主要挑战。 (1)既定基线的情况通常是无与伦比的,而且有时甚至是有缺陷的,因为现有的评估数据集通常与培训数据集有一些重叠,因此违反了零照片范式; (2)大多数现有的方法都偏向可见的类,这在对可见和看不见的类别进行评估时会大大降低性能。为了应对这些挑战,我们首先引入了一个新的多模式数据集,用于零照片评估,称为MZSL-50,其中有4462个视频来自50个广泛多元化的类别,并且与培训数据没有重叠。此外,我们提出了一种新型的多模式零射击变压器(MZST)体系结构,该体系结构利用了吸引瓶颈进行多模式融合。我们的模型可以直接预测语义表示,并且在将偏见降低到可见的类别方面表现出色。我们进行了广泛的消融研究,并在三个基准数据集和我们的新型MZSL-50数据集上实现最先进的结果。具体来说,我们提高了传统的MZSL绩效2。1%,9。81%和8。 vgg-sound,UCF-101和ActivityNet的68%。 最后,我们希望引入MZSL-50数据集将促进对社区中多模式零射击的深入研究。 181%和8。vgg-sound,UCF-101和ActivityNet的68%。最后,我们希望引入MZSL-50数据集将促进对社区中多模式零射击的深入研究。1
最近,Visual Transformer(VIT)及其以下作品放弃了卷积,并利用了自我发项操作,比CNN获得了可比甚至更高的精度。最近,MLP-Mixer放弃了卷积和自我发项操作,提出了仅包含MLP层的体系结构。为了实现交叉补丁通信,除了通道混合MLP外,它还设计了其他令牌MLP。在诸如JFT-300M之类的极限数据集上进行训练时,它会取得令人鼓舞的结果。,但是当在ImagEnet-1k等中等规模的数据集上训练时,它的表现不如其CNN和VIT对应。MLP混合使用的性能下降激励我们重新考虑令牌混合MLP。我们发现,MLP混合中的令牌混合操作是深度卷积的变体,具有全局接收场和空间特异性配置。在本文中,我们提出了一种新颖的纯MLP体系结构,即空间移位MLP(S 2 -MLP)。不同于MLP混合器,我们的S 2 -MLP仅包含通道混合MLP。我们设计了一个空间换档操作,以实现通过补丁之间的通信。它具有局部接收场,是空间的 - 不可知论。同时,它无参数且有效地计算。在Imagenet-1K数据集训练时,提出的S 2 -MLP比MLP混合剂具有更高的识别精度。同时,S 2 -MLP在ImageNet-1k数据集上具有出色的性能,具有更简单的架构,较少的失败和参数。
Darktrace 免疫系统利用开放式架构,无缝接入不断发展的多样化生态系统。通过一键式集成,该平台可以立即获取新形式的遥测数据,在既定的工作流程中分享定制的 AI 见解,并与各种技术进行互操作,以在电子邮件系统、内联防御和协作平台上提供自主响应。除了越来越多的一键式集成之外,Darktrace 免疫系统还有多种数据获取和输出方法,以最适合您的生态系统。
单元II IOT-AN建筑概述和艺术课的建筑状态:10 IoT-An Anchlectural概述:建筑架构,主要设计原理和所需功能,IoT体系结构大纲,标准注意事项。物联网体系结构 - 艺术:简介,艺术状态,参考模型和体系结构,物联网参考模型 - 物联网参考架构简介,功能视图,信息视图,部署和操作视图,其他相关的架构视图。单元III工业与安全与安全班级工业互联网:8介绍,工业4.0,工业互联网(IIOT),IIOT架构,基本技术,应用和挑战。安全与安全:简介,系统安全,网络安全,通用应用程序安全,应用程序流程安全和安全性,
主板是 PC 的神经中枢,负责促进所有硬件组件之间的通信。如果没有主板,CPU、RAM 和显卡等组件将无法交互,从而导致计算机无法运行。它决定了 RAM 的类型和数量、可以使用的 CPU、计算机的功能和能力(如 USB 和以太网支持)以及未来扩展的潜力。此外,主板在 BIOS(基本输入/输出系统)或 UEFI(统一可扩展固件接口)中存储计算机的固件,这些固件在启动过程中初始化硬件,然后将控制权移交给操作系统。
摘要本文介绍了GSCORE,这是一个硬件加速器单元,该单元有效地执行了使用算法优化的3D Gauss-ian剥落的渲染管道。GSCORE基于对基于高斯的辐射场渲染的深入分析的观察,以提高计算效率并将技术带入广泛采用。在此过程中,我们提出了几种优化技术,高斯形状感知的交叉测试,分层排序和下图跳过,所有这些都与GSCORE协同集成。我们实施了GSCORE的硬件设计,使用商业28NM技术进行合成,并评估具有不同图像分辨率的一系列合成和现实世界场景的性能。我们的评估要求表明,GSCORE在移动消费者GPU上实现了15.86倍的速度,其面积较小,能源消耗较低。
10实施本标准或拟议标准的某些要素可能受第三方专利权的约束,包括临时专利权(此处“专利权”)。dmtf不向标准用户陈述有关此类权利的存在,也不承担承认,披露或确定任何或所有此类第三方专利权所有者或索赔人,也不对任何不完整或不准确的认同或不准确的认同或披露此类权利,所有者,所有者或索赔人。dmtf不应以任何法律理论,无论采用任何方面的任何方面或任何情况,都无法承认,披露或确定任何此类第三方专利权,或者对于该方在其产品,协议或测试程序中对标准或其成立的依赖。dmtf对任何执行此类标准的一方不承担任何责任,无论是否可以预见,对任何专利所有人或索赔人都不承担任何责任,并且如果出版后撤回或修改了标准的成本或损失,并且在出版后撤回或修改了损失,并且由任何人予以实施的任何一方无害,以任何人的索赔代理和所有所有者的索赔。
ieee.org › iel7 2023 年 1 月 15 日 — 2023 年 1 月 15 日 实施以提供用于连接的标准 API。 其他系统组件。 ... 用于建模和模拟资源管理技术的工具包。
本研究调查了生成人工智能(Genai)对建筑教育中数字素养发展和整体能力的影响。研究设计着重于应用Genai工具,例如Chatgpt,Midjourney,Bricscad Bim和VR/AR软件,及其对建筑学生的整体能力的影响。本文使用了一种混合研究方法,该方法结合了建筑学生在住宅重新审视项目中的进步案例研究,使用Midjourney,Bricscad BIM和VR/AR软件,以及对350个在2023-2023-2024-2024-2024校学年的大陆大学和香港的两名知名大学的在线问卷调查。这种方法旨在加深对Genai对整体能力框架内的概念创造力,主动性,自我管理和压力承受能力的影响。研究结果表明,建筑专业的学生在设计概念阶段经常使用Genai工具,这表明他们与特定的教学法中的研究和概念性创造力相关。此外,这些发现揭示了频繁的Genai工具使用情况之间的潜在相关性,时间管理的改善以及建筑专业的焦虑症减少。结果增强了对建筑教育中数字技术的理解,同时为未来的Genai实施提供了宝贵的见解。这项研究强调了融合Genai的潜在好处,强调了它们在培养创造力,有效的时间管理和压力耐受性中的作用。