ieee.org › iel7 2023 年 1 月 15 日 — 2023 年 1 月 15 日 实施以提供用于连接的标准 API。 其他系统组件。 ... 用于建模和模拟资源管理技术的工具包。
• 理解计算机体系结构的高级硬件和软件问题 • 理解多处理器体系结构和连接机制 • 理解多处理器内存管理 模块 I:(10 小时)微处理器和微控制器、RISC 和 CISC 体系结构、并行性、流水线基础、算术和指令流水线、流水线风险、超标量体系结构、超级流水线体系结构、VLIW 体系结构、SPARC 和 ARM 处理器。 模块 II:(10 小时)基本多处理器架构:Flynn 分类、UMA、NUMA、分布式内存架构、阵列处理器、矢量处理器。 模块 III:(10 小时)互连网络:静态网络、网络拓扑、动态网络、云计算。 模块 IV(10 小时)内存技术:缓存、缓存内存映射策略、缓存更新方案、虚拟内存、页面替换技术、I/O 子系统。 结果
历史将使约翰·阿奇博尔德·惠勒(John Archibald Wheeler)视为20世纪高耸的智力之一。他的职业生涯跨越了从著名的物理黄金时代到与太空时代,信息革命以及量子和粒子物理学的技术胜利相关的新物理学的过渡。他的贡献,从核物理学的开拓性工作到一般相对论和天体物理学,在这里列出了很多。1他对三代物理学家的影响是巨大的。,但惠勒不仅仅是一位出色且有影响力的理论物理学家。决定以他的荣誉举办研讨会科学和最终现实,这反映了一个事实,即他也是一个鼓舞人心的有远见的人,他将本卷与希腊哲学家Heraclitus相比,将物理学和宇宙学是一种独特的思想和推理方式。“科学进步”,惠勒曾经对我说:“归功于思想的冲突,而不是稳定的事实积累。”惠勒一直热爱争议。毕竟,物理的黄金时代是建立在它们上的。相对论的理论从统一运动的相对性原理(可以追溯到伽利略)和麦克斯韦(Maxwell)的电气磁性方程式之间的不一致性提出,这预测了光速固定的光速。量子力学来自热力学与辐射能的连续性质的不兼容。Wheeler也许以他在引力理论中的工作而闻名,该理论在爱因斯坦的一般相对论中获得了标准表述。尽管被誉为人类智力的胜利,也是最优雅的科学理论
摘要 本文讨论了可用的人工智能 (AI) 模型的组合,即神经语言模型 (NLM) 与经过训练的 GAN 和人类解释,以促进架构构思。工作流程使用语义提示识别推测设计的概念场景。结果成为视觉参考,以补充修订的语义描述,以指导 VQGAN+CLIP 模型,利用对结果的控制,然后使用降维对结果进行排序,并进一步策划以训练其他模型 (GAN)。NLM 对文本输入的解释增加了跨越更大语义距离的可能性,以实现创造性的视觉结果,而 AI-人类步骤的嵌套工作流程可以自动查询更大的解决方案空间。此外,它还考虑了基于语言 (NLM) 的处理模型 (LeCun, 2021) 导致的视觉数据 (Hadamard, 1945) 的低带宽、还原编码问题,这可能会限制设计机构。
在这项工作中,我们证明,由于现有评估协议和数据集中的不足,因此有必要重新审视并全面研究Mul-timodal零射击学习(MZSL)问题问题。具体来说,我们解决了MZSL方法面临的两个主要挑战。 (1)既定基线的情况通常是无与伦比的,而且有时甚至是有缺陷的,因为现有的评估数据集通常与培训数据集有一些重叠,因此违反了零照片范式; (2)大多数现有的方法都偏向可见的类,这在对可见和看不见的类别进行评估时会大大降低性能。为了应对这些挑战,我们首先引入了一个新的多模式数据集,用于零照片评估,称为MZSL-50,其中有4462个视频来自50个广泛多元化的类别,并且与培训数据没有重叠。此外,我们提出了一种新型的多模式零射击变压器(MZST)体系结构,该体系结构利用了吸引瓶颈进行多模式融合。我们的模型可以直接预测语义表示,并且在将偏见降低到可见的类别方面表现出色。我们进行了广泛的消融研究,并在三个基准数据集和我们的新型MZSL-50数据集上实现最先进的结果。具体来说,我们提高了传统的MZSL绩效2。1%,9。81%和8。 vgg-sound,UCF-101和ActivityNet的68%。 最后,我们希望引入MZSL-50数据集将促进对社区中多模式零射击的深入研究。 181%和8。vgg-sound,UCF-101和ActivityNet的68%。最后,我们希望引入MZSL-50数据集将促进对社区中多模式零射击的深入研究。1
单元II IOT-AN建筑概述和艺术课的建筑状态:10 IoT-An Anchlectural概述:建筑架构,主要设计原理和所需功能,IoT体系结构大纲,标准注意事项。物联网体系结构 - 艺术:简介,艺术状态,参考模型和体系结构,物联网参考模型 - 物联网参考架构简介,功能视图,信息视图,部署和操作视图,其他相关的架构视图。单元III工业与安全与安全班级工业互联网:8介绍,工业4.0,工业互联网(IIOT),IIOT架构,基本技术,应用和挑战。安全与安全:简介,系统安全,网络安全,通用应用程序安全,应用程序流程安全和安全性,
最近,Visual Transformer(VIT)及其以下作品放弃了卷积,并利用了自我发项操作,比CNN获得了可比甚至更高的精度。最近,MLP-Mixer放弃了卷积和自我发项操作,提出了仅包含MLP层的体系结构。为了实现交叉补丁通信,除了通道混合MLP外,它还设计了其他令牌MLP。在诸如JFT-300M之类的极限数据集上进行训练时,它会取得令人鼓舞的结果。,但是当在ImagEnet-1k等中等规模的数据集上训练时,它的表现不如其CNN和VIT对应。MLP混合使用的性能下降激励我们重新考虑令牌混合MLP。我们发现,MLP混合中的令牌混合操作是深度卷积的变体,具有全局接收场和空间特异性配置。在本文中,我们提出了一种新颖的纯MLP体系结构,即空间移位MLP(S 2 -MLP)。不同于MLP混合器,我们的S 2 -MLP仅包含通道混合MLP。我们设计了一个空间换档操作,以实现通过补丁之间的通信。它具有局部接收场,是空间的 - 不可知论。同时,它无参数且有效地计算。在Imagenet-1K数据集训练时,提出的S 2 -MLP比MLP混合剂具有更高的识别精度。同时,S 2 -MLP在ImageNet-1k数据集上具有出色的性能,具有更简单的架构,较少的失败和参数。
本研究调查了生成人工智能(Genai)对建筑教育中数字素养发展和整体能力的影响。研究设计着重于应用Genai工具,例如Chatgpt,Midjourney,Bricscad Bim和VR/AR软件,及其对建筑学生的整体能力的影响。本文使用了一种混合研究方法,该方法结合了建筑学生在住宅重新审视项目中的进步案例研究,使用Midjourney,Bricscad BIM和VR/AR软件,以及对350个在2023-2023-2024-2024-2024校学年的大陆大学和香港的两名知名大学的在线问卷调查。这种方法旨在加深对Genai对整体能力框架内的概念创造力,主动性,自我管理和压力承受能力的影响。研究结果表明,建筑专业的学生在设计概念阶段经常使用Genai工具,这表明他们与特定的教学法中的研究和概念性创造力相关。此外,这些发现揭示了频繁的Genai工具使用情况之间的潜在相关性,时间管理的改善以及建筑专业的焦虑症减少。结果增强了对建筑教育中数字技术的理解,同时为未来的Genai实施提供了宝贵的见解。这项研究强调了融合Genai的潜在好处,强调了它们在培养创造力,有效的时间管理和压力耐受性中的作用。
已用于机械响应变色聚合物[8–10],而电子转移机制已被用于制造电致发光机器人皮肤。[11] 具有应力可调结构色的软材料也已开发出来,使用水凝胶基质中的定向纳米片或有机双层、聚合物渗透的光子晶体和液晶系统。[4,5,12] 尽管概念验证材料和设备已经成功展示,但目前这些材料在自主和节能的块体设备中的利用受到以下因素的阻碍:诱导颜色变化所需的高能量输入、速度慢、不可逆性以及扩大合成和制造工艺的挑战。与人造设备相比,鱼、鱿鱼和变色龙等动物已经进化出优雅、节能的细胞内结构,可以动态控制颜色,从而进行交流、警告、保护和伪装。 [13–17] 其中一些动物的彩虹色是由一种名为虹细胞的特殊细胞内的层状纳米结构反射光线的建设性干涉产生的。颜色和亮度的变化是通过细胞介导对这些反射结构的层状间距和方向的操控而产生的。例如,霓虹灯鱼只需使用所谓的百叶窗机制倾斜高反射率的鸟嘌呤板,就能将颜色从蓝绿色(≈ 490 纳米)变为靛蓝色(≈ 400 纳米)(图 1 A、B 和电影 S1,支持信息)。[13] 在电刺激虹细胞的驱动下,颜色变化是可逆的,而且速度超快。由于该机制依靠入射光作为动力源,并且反射光线通过建设性干涉得到加强,因此这些动物可以用最少的能量输入产生强烈、动态可调的颜色。人们还广泛探索了堆叠的薄片形式的层状结构,以便对合成材料的性质和功能进行结构控制。受软体动物壳结构的启发,粘土和无机薄片排列成珍珠层的砖和砂浆结构,可用于显著提高聚合物基复合材料的刚度和断裂韧性。[18–22] 除了机械性能外,人们还开发了具有精心设计的薄片取向的结构材料,以提高锂离子电池石墨阳极的充电速率[23],或实现受植物启发的变形结构[24]和软机器人的形状变化。[25] 与许多可以实现的组装过程相比,
10实施本标准或拟议标准的某些要素可能受第三方专利权的约束,包括临时专利权(此处“专利权”)。dmtf不向标准用户陈述有关此类权利的存在,也不承担承认,披露或确定任何或所有此类第三方专利权所有者或索赔人,也不对任何不完整或不准确的认同或不准确的认同或披露此类权利,所有者,所有者或索赔人。dmtf不应以任何法律理论,无论采用任何方面的任何方面或任何情况,都无法承认,披露或确定任何此类第三方专利权,或者对于该方在其产品,协议或测试程序中对标准或其成立的依赖。dmtf对任何执行此类标准的一方不承担任何责任,无论是否可以预见,对任何专利所有人或索赔人都不承担任何责任,并且如果出版后撤回或修改了标准的成本或损失,并且在出版后撤回或修改了损失,并且由任何人予以实施的任何一方无害,以任何人的索赔代理和所有所有者的索赔。
