Type Name Description Property acceleromenter_sample Last 3-axial accelerometer measurement Property accelerometer_vector Last 3-axial accelerometer vector of samples Property accelerometer_threshold Accelerometer threshold for event detection Action start/stop Activate/deactivate the sensor monitoring Event onOverThresholdEvent Trigger the event when the accelerometer sample is greater than the threshold value Table 1.与每个SHM传感器相关的TD子集(机器可信学格式)
碳是一种极具吸引力的支撑材料,因为它并不昂贵,当前的化学和热稳定性,并且通过修改其结构,更改了对确定催化性能至关重要的电子和几何特性,它具有多种用途[12-15]。此外,通过简单地燃烧(焚化)碳材料或提取,金属NP可以很容易被回收[16]。的确,碳表面结构特征强烈影响金属支持的相互作用[17-19]。Zhao等。 报道了碳纳米纤维(CNFS)结构中表面菌株的PD NP结合能的增加[20]。 PD-C相互作用在存在空缺的情况下也得到了加强,并从PD 4D轨道转移到C悬挂键[21]。 为了调整碳材料的表面是杂原子的引入,例如 o,n,b和p在其蜂窝晶格结构中。 沉积在杂种掺杂的碳表面上的 NP吸引了研究人员的注意,因为NPS结合更强并防止了烧结问题[22]。 这些催化剂的电子结构也会影响其在诸如水力氧合[23],电催化氧还原[24],光催化氧化等反应中的活性[25]。 氧作为掺杂剂会影响碳和金属纳米颗粒之间的电荷转移,实际上,大多数杂原子增强了相邻碳原子的电子密度,从而增加了从C到金属原子的反向构成[26]。Zhao等。报道了碳纳米纤维(CNFS)结构中表面菌株的PD NP结合能的增加[20]。PD-C相互作用在存在空缺的情况下也得到了加强,并从PD 4D轨道转移到C悬挂键[21]。为了调整碳材料的表面是杂原子的引入,例如o,n,b和p在其蜂窝晶格结构中。NP吸引了研究人员的注意,因为NPS结合更强并防止了烧结问题[22]。这些催化剂的电子结构也会影响其在诸如水力氧合[23],电催化氧还原[24],光催化氧化等反应中的活性[25]。氧作为掺杂剂会影响碳和金属纳米颗粒之间的电荷转移,实际上,大多数杂原子增强了相邻碳原子的电子密度,从而增加了从C到金属原子的反向构成[26]。氮和硼掺杂的C材料已受到越来越多的考虑因素,因为它们直接影响了固体的费米水平[27,28],而对其支持的PD和PD合金NP在FA分解反应中显示出有希望的活动和耐用性[29-32]。尽管PD NPS在氧气和磷掺杂碳上的沉积是甲酸脱氢反应仍然是一个挑战,但Xin等人。通过XPS揭示了磷掺杂的影响,即P掺杂会影响PD的电子特性增强其活性和催化剂稳定性[33]。
在古人类学研究中,牙科和骨遗迹是有关个人/人所属的个人和社区的生活史的不可替代的信息来源。近年来,物理化学(例如,放射性碳和铀,稳定的同位素分析,古元组学,痕量元素分析)和生物分子分析(例如,古代DNA,古蛋白质组学)的应用已彻底改变了骨科学和古人类人类学学的领域。即使在大多数情况下,它们涉及破坏性或微观破坏性分析,但它们的应用已在生物考古学领域中变得基本,从而可以检索通过使用其他非破坏性方法无法访问的信息(例如,Bortolini等,2021; Lugli等,2019,2018; Nava等,2020; Slon等人,2018年; Sorrentino等,2018)。因此,需要进行标准方案来计划集成恢复,甚至在收集样品之前,需要考虑标本的保存状态(大小和形态,以及物理化学特性)及其在恢复后的可能使用(例如,进一步的科学研究,进一步的科学研究,展览,展览,教学)。
摘要 - 云已经代表了全球能源消耗的重要组成部分,并且这种消费不断增加。已经研究了许多解决方案,以提高其能源效率并降低其环境影响。然而,随着新要求的引入,特别是在延迟方面,云互补的架构正在出现:雾。雾计算范式代表一个靠近最终用户的分布式体系结构。在最近的作品中不断证明其必要性和可行性。然而,它对能源消耗的影响通常被忽略,尚未考虑可再生能源的整合。这项工作的目的是考虑可再生能源的整合,展示能量良好的雾建筑。我们探讨了三种资源分配算法和三个合并策略。基于实际痕迹,我们的仿真结果表明,在雾环境中节点的固有低计算能力使得很难利用可再生能源。此外,在此上下文中,计算资源之间的通信网络消费量的份额以及通信设备更难通过可再生能源来供电。
风险因素水平证据空气污染微动物模型表明空气中的颗粒物污染物通过脑血管和心血管疾病,Aß沉积和淀粉样蛋白前体蛋白质加工加速神经退行性过程104。一项系统的审查,包括13项纵向研究发现,暴露于空气污染物与痴呆症风险增加有关114。吸烟微型不同的系统评价证实,主动吸烟会增加痴呆症的风险20,115。的确,吸烟会增加氧化应激,并且是多种血管疾病(例如高血压,高胆固醇)以及失眠和睡眠呼吸暂停的危险因素,这与病理认知下降的可能性增加有关。TBI微观证据的历史表明,在人类和小鼠模型中,即使是一个严重的TBI也是如此,具有广泛的高磷酸化TAU病理学104。多项研究和荟萃分析已经证实,TBI的史增加了痴呆症116,117的风险,甚至报告了两倍的激增117。值得注意的是,来自阿尔茨海默氏病国家疾病协调中心数据库的数据表明,有和没有TBI病史的老年人的临床特征差异很大,可以区分,这表明TBI不一定只是其他已知痴呆症亚型的危险因素,而是TBI诱导的dementia的危险因素应该是Subsyia subsyia subsyia subsy subsysia。睡眠破碎/睡眠障碍
要控制对OpenShift容器平台群集的访问,群集管理员可以配置用户身份验证,以确保仅批准的用户访问群集。要与OpenShift容器平台群集进行交互,必须使用OpenShift容器平台API进行身份验证。您可以通过在请求中向OpenShift容器平台API提供OAuth访问令牌或X.509客户端证书来验证。
摘要Falcon是NIST六年Quantum加密标准化竞赛的赢家。基于著名的Gentry,Peikert和Vaikuntanathan(GPV)(STOC'08)的全体锤子框架(Falcon)利用NTRU Lattices来实现基于晶格基的方案中最紧凑的签名。其安全性取决于该方案的核心元素高斯采样器的基于RényiDivergence的论点。然而,使用统计距离来争论分布的GPV证明,由于参数选择而无效地应用于猎鹰,导致统计距离的距离为2-34。其他实施驱动的偏离GPV框架进一步使原始证明无效,尽管选择了标准化,但Falcon没有安全证明。这项工作仔细研究了Falcon,并证明了一些少数次要的保守修改允许在随机Oracle模型中对该方案的第一个正式证明。我们分析的核心是GPV框架与RényiDivergence一起使用的适应,以及在此度量下选择参数选择的优化方法。不幸的是,我们的分析表明,尽管我们对Falcon -512和Falcon -1024进行了修改,但对于任何一种方案,我们都没有实现强大的不强制性。对于普通的不强制性,我们能够证明我们对Falcon -512的修改几乎无法满足所要求的120位安全目标,而对于Falcon -1024,我们确认了声称的安全级别。因此,我们建议重新访问猎鹰及其参数。
1阿德莱德大学,阿德莱德,阿德莱德,澳大利亚2劳动劳动仪和f´ısica实验depart'ıculas -lip and Instituto superior tstic- iSt-伊斯特,伊斯特,伊斯兰特大学 - 乌尔 - 乌尔 - 乌尔 - 乌尔斯博亚大学 - 利斯博亚大学,利斯博亚,葡萄牙3个天文学,turin turin,turin,intaftor,intaftor,intaf。都灵,意大利5号,位于奥米科·巴洛克(Omico Bariloche)和巴尔西罗(Instituto Balseiro)(cnea-uncuyo-concet),阿根廷圣卡洛斯·德·巴洛克(San Carlos de Bariloche),阿根廷6核物理学研究所,克拉科夫(Krakow),波兰(Krakow),波兰(Krakow),波兰7研究所,tecnolog´head en detecci´head en detecci´on y astroparpart y sartropart´in y sartopart´in uns uns uns uns uns bue,阿根廷艾尔斯8大学,tecnol´gica nacional -Argentina Buenos Aires,阿根廷布宜诺斯艾利斯市教职员工9 Gran Sasso Science Institute,L'Aquila,意大利L'Aquila 10 Infn National Laboratories Gran Sasso的Infn National Laboratories Gran Sasso,Gran Sasso,Assergi(L'Aquila),Italy 11 Instituto Galego Galego Galego Galego Galego Galego Galego Galego Galego Galego de altasig de alasig de alasig de aalts'大学)。西班牙圣地亚哥·德·波斯特拉(De Santiago de Compostela)意大利米兰米兰区17 INFN,那不勒斯,那不勒斯,意大利18 rwth亚兴大学,iii。Grenoble Alpes,LPSC-In2p3,38000 Grenoble,法国27 Max-Planck-Institut Paur放射捕集,德国波恩28 Instituto de f´isica de f´isica de Rosario(Ifir)-Conicet/u.n.r。physikalisches Institut A,德国亚州19号捷克共和国布拉格24科罗拉多州科罗拉多州矿业学院和Biochoquic and Pharmactics Sciences U.R.,Rosario,阿根廷29 Karlsruhe技术研究所(KIT),实验粒子物理研究所,Karlsruhe,德国,德国30 Imapp,Radboud University,Nijmen,Nijmen,Nijmen,Nijmen。荷兰阿姆斯特丹科学园的Hoge Energie Fysica(Nikhef)的Kernfysica 32巴黎 - 萨克莱大学,CNRS/IN2P3,IJCLAB,IJCLAB,IJCLAB,IJCLAB,ORSAY,法国33 Institut Universitaire Universitaire Universitaire de France(IUF),法国34 Karlsruhe Institute Institute of Cregenhitation of Crenolety Institute of Actirate of Actrot of Actrot of Actrot ofart over carret德国的卡尔斯鲁赫(Karlsruhe)35国际高级研究中心和物理科学研究所,eCyt-nnsam和conicet,校园Miguelete-sanMartín,布宜诺斯艾利斯,布宜诺斯艾利斯,阿根廷联邦政府,阿根廷联邦政府C.A.F.P.E.,格拉纳达,西班牙40 Vrije Universite Brussels,布鲁塞尔,比利时,41 Universit`a di Palermo,Dipartimento di Physics和Chimica” E. div>segr`e ", Palermo, Italy 42 Universidad Aut´Onoma de Chiapas, Tixtla Guti´Errez, Chiapas, M’EEXICO 43 Instituto de Tecnolog’ıs en Detecci´on y Astropart´ıculas (Cnea, Conicet, Unsam), and Universidad Tecnol´ today Nacional - Facultod Regional MenDoza (Conicet/Cnea), Mendoza, Argentina 44 Universidade de S˜ao Paulo, Escola de Engenharia de Lorena, Lorena, SP, Brazil 45 Infn, Section of Lecce, Lecce, Italy 46 Observatorio Pierre Auger, Malargs, Argentina 47 Palacky University, Olomouuc, Czech Republic 48 University of Naples " II“物理学系”,“ Ettore Pancini”,意大利那不勒斯49米兰理工学院,航空水平科学系,米兰,意大利萨伦托大学米兰,数学与物理学系” E.de Giorgi ", Lecce, Italy 51 Universidade Federal Fluminense, Eeimvr, Volta Redonda, RJ, Brazil 52 Case Western Reserve University, Cleveland, Oh, USA 53 University Siegen, Department Physik - Experimentelle Teilchenphysik, Siegen, Germany 54 IFLP, Universidad, Universidad Nacional de la Plata and conicet, La Plata,阿根廷55天文学研究所,艾斯卡西奥(IAFE,CONICE-uba),布宜诺斯艾利斯,阿根廷56 de f´ısica和Departura de ciencias de ciencias de la at at Amp at Amp y atm y Los oc´ean Y los oc´ean,FCEYN,FCEYN,FECEYN,FECEYN,FECEYN,UNDUREDAD DEBENES AIRES AIRES AIRES DEESERES,BUENES DEESERES,BUENES,BUENES,BUENES,BUENES DEERES,BUENES DEERES。 Janeiro(UFRJ),observ´orio do Valongo,Rio de Janeiro,RJ,RJ,巴西58联邦政府deEduca报,CI Uense和Technology Do Rio de Janeiro(IFRJ),巴西59 de s〜sive s〜s〜ao Paulo,Spituto de f´
智能系统通常可以理解为由人类和人工制剂,计算和物理人工制品以及调节均质组件之间相互作用的机构和规范组成的社会技术系统。智能社会技术系统的设计要求非平凡的社会和组织概念和技术,通常是从代理和多代理系统(MAS HESEFORTH)领域进行的[54]。特别,协议技术[55]可以在旨在促进智能系统中促进合作和协作活动(例如对话,谈判,论证)中促进合作和协作活动之间的智能互动。鉴于他们与MAS的长期联系[12,49],基于逻辑的技术在这种情况下可以发挥作用,尤其是在处理互动时(包括人与人之间的人对代理和代理商对代理人)[52]。更具体地说,基于逻辑的协议技术可以作为推理和代理对话的一般框架,在这种情况下,论证扮演着核心角色
月球表面上最大的移动性需求驱动因素之一是将货物从其降落地点转移到其使用点。许多因素推动了货物点的使用点,其中许多因素需要与着陆点分离(例如,由着陆器的阴影,兰德斯污染造成的黑暗或从着陆器羽状表面相互作用中弹出弹出)。这些搬迁距离可能包括以下因素:•与着陆器遮蔽(数十米)•由于着陆器与现有基础设施和登陆器的划分之间的分离,降落器爆炸弹性射出限制(> 1,000 m),或者是在可用的区域陆地上(以5,000 m的可用区域范围)(以5,000 m)的形式汇总的元素汇总(以便5,000 m),以供元素汇总到5,000 m的lun intim intim intim insive tos toe lugn of 5,000 m)。建筑“月球遗址选择”白皮书。[4]