摘要簇的定期间隔短的短质体重复序列(CRISPR)和CRISPR相关(CAS)基因提供适应性免疫,以防止入侵古细菌和细菌中外核酸的侵袭。该系统在三个不同的阶段发挥作用:适应,生物发生和干扰。CRISPR/CAS系统目前被分类为至少五种不同类型,每种类型均具有签名蛋白,其中III型系统表现出双重DNA/RNA干扰活性。已经确定了几种III型监视复合物的结构:它们由几个不同的亚基组成,并且与I型监视复合物具有惊人的建筑相似性。在这里,我们回顾了有关CRISPR/CAS型III系统的遗传,生化和结构研究,并讨论了其在遗传操作中的应用,包括基因组工程和基因沉默。
学期I BTM -111:生物化学I(3+0)1。生物分子的基本化学:碳水化合物,脂质,蛋白质和核酸2。氨基酸:分类和特性3。蛋白质:基于结构和功能的分类,蛋白质的结构组织(主要,次生,第三和第四纪结构)。4。光合作用:光合作用仪的结构,光和暗反应,C 3和C 4周期5。脂质:结构,属性,分类和功能BTM -112:微生物I(3+0)1。微生物学的历史,微生物学的范围,微生物多样性的概念2。显微镜:荧光,相对比,电子显微镜3。Eubacteria,古细菌,海洋资源和多样性和真核微生物的简介4。革兰氏正,革兰氏阴性和古细胞细胞之间的结构差异5。微生物生长:批次,连续和同步培养物6。微生物营养:光营养,趋化性,异育7.微生物介质:简单,微分和选择性8。纯文化技术:隔离,保存和维持培养物BTM -113:细胞生物学(3+0)1。简介:细胞理论,原核生物和真核细胞的结构组织。2。质膜:跨膜的结构组织,功能,运输。3。细胞细胞器:粗糙和光滑的内质网,高尔基体配合物,蛋白质运输,溶酶体,过氧化物酶体,液泡,线粒体,叶绿体的结构和功能。4。8。核和核仁,染色质结构和组织5。细胞骨架和额外的蜂窝矩阵6。细胞分裂:细胞周期和细胞周期的控制,细胞死亡(凋亡和坏死),癌症。BTM -114:生物化学Lab -I(0+2)1。生物化学单位2。生化实验室中使用的仪器/设备和玻璃商品3。溶液的浓度4。PH和确定5。缓冲区,它使用6。碳水化合物的定性测试7。通过O-甲硅烷法估计葡萄糖。 氨基酸的定性测试9。 蛋白质的定性测试。 10。 通过Biuret方法估计蛋白质。 11。 滴定强酸和弱酸的混合物12。 纸色谱法通过O-甲硅烷法估计葡萄糖。氨基酸的定性测试9。蛋白质的定性测试。10。通过Biuret方法估计蛋白质。 11。 滴定强酸和弱酸的混合物12。 纸色谱法通过Biuret方法估计蛋白质。11。滴定强酸和弱酸的混合物12。纸色谱法
1。引言更多的证据表明人类健康与肠道菌群之间存在关系(Valdes等人。2018;丁等。2019)。微生物群是微生物组的一部分,是指人体上的生物微生物,由细菌,古细菌,真核生物和病毒组成(Marchesi和Ravel 2015; Berg等人,2020)。有一个非凡的微生物群,与人体中的细胞数量相同,其中大多数生活在肠道中(Sender等人2016)。肠道微生物群生态系统的形成是一个复杂但连续的过程,受内部和外部决定因素的影响(Chong etal。2018)。肠道微生物群对于开发免疫系统,调节细胞增殖和防止致病性微生物至关重要(Jandhyala 2015)。近年来,肠道微生物群对人类疾病的影响一直是生物医学研究学会的流行话题(豚鼠和cotter
摘要。本文介绍了与研究现代分子遗传学方法的可能性有关的研究结果-T- RFLP分析(末端限制性碎片长度多态性),以鉴定在具有临床健康的高生产力牛和具有亚周期性尼斯氏症的高生产力的奶牛中瘤胃中的微生物中的微生物群体。研究方法基于对微生物基因组变异性中保守区域的分析。结果表明,用于鉴定研究动物瘤胃含量中微生物的方法的高效率。在具有亚临床酮症的高生产性母牛的瘤胃中确定了一个大细菌,古细菌,原生动物和厌氧菌真菌。获得的数据使我们能够显着扩大有关牛奶生产率高的奶牛中亚临床酮症发病机理的信息。在瘤胃中有条件致病性和致病的菌群存在有条件的致病性和致病性菌群,这表明违反了瘤胃消化,这导致动物中伴随的非传染性疾病的发展。
厌氧微生物研究活动的实验室厌氧微生物(LAM)的实验室成立于2015年,是捷克共和国马萨里克大学的微生物学部分实验生物学系的一部分。从一开始,LAM就集中在沼气生产领域,以15年的经验为基础。自2017年以来,由于与能源部门的合作,我们一直在研究与地下气体存储环境(UGS)设施有关的项目。,我们专注于旨在用作生物反应器的UGS设施中从氢和二氧化碳中靶向生产的绿色甲烷。我们的分析证实了能够从氢和碳生产甲烷的UG中存在甲烷古细菌。然而,UGS中的甲烷剂的存在不适合氢储存,这是我们研究重点的另一部分,以及微生物学影响的腐蚀(MIC),这对气体基础设施构成了威胁。我们提供的技术专长服务:
摘要经常暴露于外国核酸,细菌和古细菌已经开发出一种巧妙的适应性防御系统,称为CRISPR-CAS。该系统由群集的定期间隔短的短质重复序列(CRISPR)阵列以及与CRISPR(CAS)相关基因组成。该系统由一种复杂的机械组成,该机制将病毒和移动遗传元素(MGE)的外国核酸碎片整合到CRISPR阵列中。插入的片段(垫片)被转录,然后被CAS蛋白用作识别和失活的指导RNA。CRISPR-CAS系统的不同类型和家族由具有进化轨迹的独特适应和效应模块组成,部分独立。效应器模块的OIGIN和间隔者积分/缺失的机理远不清楚。在本文中提出了有关CRISPR-CAS系统的结构,生态和演变的最新数据及其在原核生物中辅助基因组调节中的作用。
成簇随机间隔短回文重复序列 (CRISPR) 及其相关的核酸内切酶蛋白 Cas9 已被发现是细菌和古菌中的免疫系统;尽管如此,它们现在已被用作主流生物技术/分子剪刀,可以通过插入/删除、表观基因组编辑、信使 RNA 编辑、CRISPR 干扰等方式调节大量遗传和非遗传疾病。许多经食品和药物管理局批准和正在进行的 CRISPR 临床试验采用体外策略,其中基因编辑在体外进行,然后再植入患者体内。然而,CRISPR 成分的体内递送仍处于临床前监测之下。本综述总结了使用 CRISPR/Cas9 进行基因编辑的非病毒纳米递送策略及其最新进展、战略观点、挑战以及使用纳米材料进行组织特异性体内递送 CRISPR/Cas9 成分的未来方面。
成簇随机间隔短回文重复序列 (CRISPR) 及其相关的核酸内切酶蛋白 Cas9 已被发现是细菌和古菌中的免疫系统;尽管如此,它们现在已被用作主流生物技术/分子剪刀,可以通过插入/删除、表观基因组编辑、信使 RNA 编辑、CRISPR 干扰等方式调节大量遗传和非遗传疾病。许多经食品和药物管理局批准和正在进行的 CRISPR 临床试验采用体外策略,其中基因编辑在体外进行,然后再植入患者体内。然而,CRISPR 成分的体内递送仍处于临床前监测之下。本综述总结了使用 CRISPR/Cas9 进行基因编辑的非病毒纳米递送策略及其最新进展、战略观点、挑战以及使用纳米材料进行组织特异性体内递送 CRISPR/Cas9 成分的未来方面。
Bathyarchaeia代表了一类古细菌常见,并且在沉积生态系统中丰富。在这里,我们报告了56个在不同环境的宏基因组中鉴定出的谷胱甘肽病毒的元基因组组装基因组。基因共享网络和系统基因组学分析导致了四个病毒家族的提议,包括Realms Duplodnaviria和Adnaviria的病毒,以及古细菌特异性的纺锤形病毒。基因组分析这些病毒中发现了各种CRISPR元素。拟建家族“ Fuxiviridae”的病毒带有非典型类型IV-B CRISPR-CAS系统和Cas4蛋白,可能会干扰宿主免疫。Viruses of the family “ Chiyouviridae ”encode a Cas2-like endonuclease and two mini-CRISPR arrays, one with a repeat identical to that in the host CRISPR array, potentially allowing the virus to recruit the host CRISPR adaptation machinery to acquire spacers that could contribute to competition with other mobile genetic elements or to inhibit host defenses.这些发现提出了Bathyarchaeia Virome的轮廓,并瞥见了其反防卫机制。
摘要:将分子分析和培养依赖性分离均组合在一起,以研究硫酸盐还原原核生物的多样性,并探索它们在全尺度厌氧消化体(Marrakech,Morocco)中的作用。在全球尺度上,使用16S rRNA基因测序,蛋白质细菌,杆菌植物,坚果,肌动杆菌,协同效应和euryarchaeota是最主要的门。古细菌的丰度(3.1–5.7%)与温度有关。MCRA基因范围为2.18×10 5到1.47×10 7基因拷贝。含有硫酸盐的总序列的5%的硫酸盐还原性的原核生物是peptococaccaceae,syntrophaceae,desulfobulbaceae,desulfobulbaceae,desulfobulbaceae,desulfovibrionaceaceae,syntrophobacteraceae,symtrophobacteraceae,desulfrophobacteraceae,desulfurellelaceae,desulfurellaceae,desulfobaceae。此外,DSRB基因的范围为2.18×10 5到1.92×10 7基因拷贝。结果表明,在厌氧消化过程中,对硫酸盐还原细菌的多样性和功能的探索可能在减少硫酸盐产量(一种不可能的副产品)中起关键作用。
