植物相关微生物群由多种但分类结构不同的群落(如细菌、真菌和古菌)组成,被认为是宿主植物的第二基因组,在不同植物物种之间存在差异(Brown 等人,2020 年)。植物与微生物之间的相互作用赋予植物宿主适应性优势,包括养分循环、促进生长、抗逆性和抗病原体性(Trivedi 等人,2020 年)。最近针对根系和根际土壤的研究表明,微生物群落的组装和结构受各种生物和非生物因素的影响,包括植物遗传和年龄、土壤类型和土壤特性(如 pH 值和营养物质)(Yu 等人,2018 年)。据报道,微生物群落的组装和网络
在原核生物中,CRISPR(成簇的规律间隔的短回文重复序列)最初是作为防御入侵质粒和病毒的机制而开发的。Ishino 于 1987 年首次发现 CRISPR 结构。1 在其他细菌和古细菌中发现许多类似结构后,Jansen 于 2002 年创造了 CRISPR 这个绰号。2-3 后来,Mojica 及其同事推测 CRISPR 模式及其相关蛋白质可以抵御遗传影响,并可能具有免疫防御活性。4 然而,这一领域的三位主要贡献者是 Charpentier、Doudna 和 Zhang。CRISPR Cas-9 的机制首先由 Charpentier 阐明。后来 Charpentier 和 Doudna 报道了 Cas-9 介导的生化表征和系统优化。5 张是第一个在多细胞生物中实现 CRISPR Cas-9 遗传修饰的人。6
摘要。细菌感染是一个全球问题。革兰氏阴性细菌中最常见的感染病原体是肠杆菌科家族的代表。果胶是属于肠杆菌科家族的革兰氏阴性植物病毒细菌。该研究的目的是开发用于鉴定植物性细菌的方法。以开发识别算法的测试成分的能力,我们使用了参考文献“ Bergey的古细菌和细菌系统手册”中介绍的数据。用于选择研究参数和细菌学测试的模型微生物是从俄罗斯全俄集中的微生物和果皮杆菌333收集的fsbeem博物馆fsbei Museum of fsbei ne ulylyananovsk sau ulylyananoversk sau ullyananovorum b-3455的参考菌株B-3455。stolypin。从50个植物检测和环境物体的样品中,将5种菌株归类为雌雄杆菌属杆菌属。carotovorum。
由监管委员会建立。真菌,细菌和古细菌等生物学剂被用作生物剂。通过微生物的生物降解活性,危险物质被解毒或降解。这些微生物通过包含在代谢过程中分解废物中存在的有毒化合物。通常,这种降解是各种生物的集体活动的结果。这些微生物恢复原始环境,也可以防止进一步的污染。乔治·罗宾逊(George M. Robinson)在美国微生物(Microbes)担任石油工程师,是首先使用大规模生物修复来清理加利福尼亚州圣塔芭芭拉(Santa Barbara)的漏油事件。很长一段时间以来,自然生物修复被用于清除废水,但是靶向和受控的危险废物的靶向和受控用途仅在最近才引起人们的关注。
精神噬菌体是偏爱感冒的细菌。其理想的生长温度范围从-5c到15C。它们通常在冰川供应的溪流中发现,尤其是在北极和南极地区。细菌在中等温度的条件下被称为中介体繁殖。其理想的生长温度范围为25至45摄氏度。大多数细菌,包括居住在人体和普通土壤细菌上的细菌。嗜热剂是享受热量的细菌。它们在45至70摄氏度的温度下蓬勃发展,并且经常在堆肥和温泉中发现。细菌被称为高疗中的细菌在极度炎热的环境中壮成长。其理想的生长温度从70C到110c。它们通常属于古细菌,可以在非常深的海洋深处的水热通风口中找到。
SMC和SMC样复合物在生命的所有领域都促进染色体折叠和基因组维持。最近,它们也被认为是针对异物DNA的细胞免疫的因素。在细菌和古细菌中,Wadjet和Lamassu是抗质粒/噬菌体防御系统,而SMC5/ 6和Rad50复合物在人类的抗病毒免疫中起作用。这会产生一个有趣的悖论 - 一方面,相同或密切相关的复合物如何确保染色体DNA的完整性和维护,而另一方面则可以识别和限制外染色体体外DNA?在这种微型视图中,我们将在免疫中描述对这些复合物的最新理解,包括对SMC(类似)功能原理如何解释系统如何识别入侵DNA的线性或圆形形式的猜测。
组织委员会很高兴欢迎您参加2025年6月15日至19日在芬兰赫尔辛基举行的土壤微生物生态学会议。以前的会议吸引了来自世界各地的参与者。ESM会议是一个跨学科平台,涉及与单个微生物(古细菌,细菌,真菌,Oomycetes,原生动物和病毒),微生物群落及其生态网络有关的问题。现代基因组,转录组和蛋白质组学方法与基于土壤化学,生化和功能分析的方法联系在一起,土壤动物区系和植物生态学的探索。他们亲切地邀请所有这些学科的专家加入赫尔辛基,以促进土壤生态学领域的最先进研究,并享受北部仲夏的疯狂!查看更多信息,请访问https://www.lyyti.fi/p/ecologe_of_soil_mircoornismss2025_9620/en/conference
fi g u r e 2在高山草原中评估的全范围植物和土壤特性的季节性动态。属性按最大季节进行分组:(a)春季; (b)夏天; (c)秋天。在灌木膨胀下,某些特性明显更高( + s)或较低(-s)。AOA,氨氧化古细菌; AOB,氨氧化细菌; CBH,几核酸水解酶; GLC,β-葡萄糖酶; NAG,N-乙酰葡萄糖氨基酶; Per,过氧化物酶; Pho,磷酸酶;痘,苯酚氧化酶; URE,尿布; xyl,β-二基固醇酶。 出于可视化的目的,将所有变量缩放为平均值为0,标准偏差为1。 对未量化的数据进行统计分析n = 8。 有关更多详细信息,包括实际均值和SE,精确的P和χ2值,请参见表S1 – S3。AOA,氨氧化古细菌; AOB,氨氧化细菌; CBH,几核酸水解酶; GLC,β-葡萄糖酶; NAG,N-乙酰葡萄糖氨基酶; Per,过氧化物酶; Pho,磷酸酶;痘,苯酚氧化酶; URE,尿布; xyl,β-二基固醇酶。出于可视化的目的,将所有变量缩放为平均值为0,标准偏差为1。对未量化的数据进行统计分析n = 8。有关更多详细信息,包括实际均值和SE,精确的P和χ2值,请参见表S1 – S3。
CRISPR-Cas 适应性免疫系统保护细菌和古细菌免受入侵的遗传寄生虫(包括噬菌体/病毒和质粒)的侵害。为了应对这种免疫力,许多噬菌体都具有抑制 CRISPR-Cas 靶向的抗 CRISPR (Acr) 蛋白。迄今为止,抗 CRISPR 基因主要在噬菌体或原噬菌体基因组中发现。在这里,我们使用李斯特菌 acrIIA1 基因作为标记,发现了厚壁菌中存在的质粒和其他接合元件上的 acr 基因座。在李斯特菌、肠球菌、链球菌和葡萄球菌基因组中发现的四个已识别基因可以抑制 II-A 型 SpyCas9 或 SauCas9,因此被命名为 acrIIA16-19。在粪肠球菌中,Cas9 靶向质粒的结合通过源自肠球菌结合元件的抗 CRISPR 得到增强,凸显了 Acrs 在质粒传播中的作用。相互共免疫沉淀表明,每个 Acr 蛋白
