摘要:这篇综合文章探讨了DevSecops Workflows中零信任体系结构(ZTA)的实现,重点关注其在云本地环境中的应用。该研究研究了ZTA的基本原理,将其与传统的以外围为中心的安全模型进行了对比,并在现代软件开发实践的背景下深入研究了其相关性。通过研究关键挑战,例如周边溶解,动态工作量和身份复杂性,该研究提供了对组织采用ZTA时面临的障碍的见解。本文对ZTA实施的最佳实践进行了详细的分析,包括持续监控,基于身份的访问控制,微分细分策略和全面的加密策略。此外,它强调了持续学习和适应性在保持有效安全姿势方面的重要性。通过案例研究和对现实世界情景的检查,该研究突出了成功的ZTA实施,并为从业者提供了宝贵的经验教训。本文还考虑了AI,机器学习,边缘计算和不断发展的监管景观对ZTA的潜在影响,还探讨了未来的方向。通过综合当前的研究和行业实践,本文在DevSecops中提供了ZTA的整体视图,为从业者和研究人员提供了可行的见解,以增强日益复杂和分布式云的生态系统的安全性。关键字:零信任体系结构(ZTA),DevSecops,云本地安全性,微分段,连续身份验证
摘要。网络威胁的复杂性和复杂性日益增加,使传统的基于周边的安全模型不足以保护现代数字基础架构。零信任体系结构(ZTA)已成为一种变革性的网络安全框架,该框架以“永不信任,始终验证”的原则运作。与依靠隐式信任的常规安全模型不同,ZTA执行严格的身份验证,持续监视,最小特权访问和微分割以减轻与未经授权访问和威胁横向移动相关的风险。通过整合人工智能(AI),机器学习(ML)和行为分析等技术,零信任可以增强威胁检测,减少攻击表面并确保跨云,本地和混合环境的主动安全姿势。本文探讨了零信任体系结构的核心原则,实施策略和利益,以及其网络安全方面的挑战和未来趋势。此外,它强调了现实世界中的应用和案例研究,这些应用程序证明了ZTA在保护关键资产免受高级网络威胁的有效性。通过采用零信任方法,组织可以显着提高网络攻击的韧性,并确保在不断发展的威胁格局中进行强大的数据保护。
摘要。网络威胁的复杂性和复杂性日益增加,使传统的基于周边的安全模型不足以保护现代数字基础架构。零信任体系结构(ZTA)已成为一种变革性的网络安全框架,该框架以“永不信任,始终验证”的原则运作。与依靠隐式信任的常规安全模型不同,ZTA执行严格的身份验证,持续监视,最小特权访问和微分割以减轻与未经授权访问和威胁横向移动相关的风险。通过整合人工智能(AI),机器学习(ML)和行为分析等技术,零信任可以增强威胁检测,减少攻击表面并确保跨云,本地和混合环境的主动安全姿势。本文探讨了零信任体系结构的核心原则,实施策略和利益,以及其网络安全方面的挑战和未来趋势。此外,它强调了现实世界中的应用和案例研究,这些应用程序证明了ZTA在保护关键资产免受高级网络威胁的有效性。通过采用零信任方法,组织可以显着提高网络攻击的韧性,并确保在不断发展的威胁格局中进行强大的数据保护。
Arm, Thumb, Thumb-2 Instruction Sets - Arm v4, v4T, v5, v6 instruction set - Thumb instruction set - v7 Thumb-2 instruction set - Data barriers, instruction barriers - Synchronization, load/store exclusice instructions - ARM/Thumb interworking - Assembler directives
由于低成本无人机的扩散代表了安全性的潜在风险增加[1] [2],因此对小小的无人机的检测最近已成为一个非常重要的话题。FMCW雷达被认为是无人机检测的最合适的解决方案之一,因为其架构简单性和短距离检测能力[1] - [4]。对小型无人机的检测代表了一项具有挑战性的任务,因为它们的尺寸非常有限和非反射材料组成意味着非常小的雷达横截面(RCS)。出于这个原因,只能通过利用毫米波频率,高发射功率和具有低噪声图(NF)和高动态范围的接收器来实现雷达检测范围和分辨率的优化。在这种情况下,在性能方面,硝酸盐(GAN)微波技术代表了最佳解决方案,因为它们为发射器和接收器微波前端提供了最先进的优点图[4] - [6]。在微波频率下对上GAN功率密度的开发是实现紧凑,高功率发射器所需的优势,以增加无人机目标的弱回声信号(低RCS)。另一方面,由于低噪声和广泛的动态范围特征的结合,GAN技术在RX部分中也非常有吸引力[5] - [9]。在本文中,我们描述了一种基于GAN的Ka-band MMIC LNA,该LNA将在FMCW雷达的接收器中被利用,以进行小型无人机检测。This feature is of primary importance in a FMCW radar receiver for drone detection, since the LNA needs to detect very low drone-echo signals (close to the thermal noise level), while maintaining its linearity even in presence of strong interferer/blocking signals, which are typically due to radar clutter and the leakage of the power amplifier of its own transmitter [3][4].MMW-GAN技术的采用使得可以同时针对低NF,高增益和大型动态范围,从而导致上KA频段无与伦比的组合性能。
摘要 - 在本文中,我们对在长期外国家应力下具有p-gan栅极的gan-on-on-si功率hemt中发生的时间依赖性排水崩溃进行了广泛的研究。尤其是,研究了由高温偏移应力引起的时间依赖性分解,这是不同过程和结构变化的函数。主要结果表明,通过改变门对距离距离(L GD)和场板配置,故障的物理位置也会发生变化。如果L GD相对较短(3 µm),则会通过排水和源之间的GAN通道层发生时间分解。在这种情况下,较薄的GAN层显着改善了长期偏离应力的稳健性。如果L GD相对长(≥4µm),则故障发生在二维电子气体(2DEG)和源场板之间。在第二种情况下,GAN层的厚度和L GD对时间依赖性分解没有显着影响,而可以优化场板长度以减少暴露于高电场的面积,因此限制了故障的可能性。最后,也已经分析了Algan屏障层的作用。如果L GD = 3 µm,则首选较薄的α层,而如果LGD≥4µm,则较低的铝含量的较厚层会增加较长的时间,以使较长的时间在未稳定应力下分解。
Type Name Description Property acceleromenter_sample Last 3-axial accelerometer measurement Property accelerometer_vector Last 3-axial accelerometer vector of samples Property accelerometer_threshold Accelerometer threshold for event detection Action start/stop Activate/deactivate the sensor monitoring Event onOverThresholdEvent Trigger the event when the accelerometer sample is greater than the threshold value Table 1.与每个SHM传感器相关的TD子集(机器可信学格式)
碳是一种极具吸引力的支撑材料,因为它并不昂贵,当前的化学和热稳定性,并且通过修改其结构,更改了对确定催化性能至关重要的电子和几何特性,它具有多种用途[12-15]。此外,通过简单地燃烧(焚化)碳材料或提取,金属NP可以很容易被回收[16]。的确,碳表面结构特征强烈影响金属支持的相互作用[17-19]。Zhao等。 报道了碳纳米纤维(CNFS)结构中表面菌株的PD NP结合能的增加[20]。 PD-C相互作用在存在空缺的情况下也得到了加强,并从PD 4D轨道转移到C悬挂键[21]。 为了调整碳材料的表面是杂原子的引入,例如 o,n,b和p在其蜂窝晶格结构中。 沉积在杂种掺杂的碳表面上的 NP吸引了研究人员的注意,因为NPS结合更强并防止了烧结问题[22]。 这些催化剂的电子结构也会影响其在诸如水力氧合[23],电催化氧还原[24],光催化氧化等反应中的活性[25]。 氧作为掺杂剂会影响碳和金属纳米颗粒之间的电荷转移,实际上,大多数杂原子增强了相邻碳原子的电子密度,从而增加了从C到金属原子的反向构成[26]。Zhao等。报道了碳纳米纤维(CNFS)结构中表面菌株的PD NP结合能的增加[20]。PD-C相互作用在存在空缺的情况下也得到了加强,并从PD 4D轨道转移到C悬挂键[21]。为了调整碳材料的表面是杂原子的引入,例如o,n,b和p在其蜂窝晶格结构中。NP吸引了研究人员的注意,因为NPS结合更强并防止了烧结问题[22]。这些催化剂的电子结构也会影响其在诸如水力氧合[23],电催化氧还原[24],光催化氧化等反应中的活性[25]。氧作为掺杂剂会影响碳和金属纳米颗粒之间的电荷转移,实际上,大多数杂原子增强了相邻碳原子的电子密度,从而增加了从C到金属原子的反向构成[26]。氮和硼掺杂的C材料已受到越来越多的考虑因素,因为它们直接影响了固体的费米水平[27,28],而对其支持的PD和PD合金NP在FA分解反应中显示出有希望的活动和耐用性[29-32]。尽管PD NPS在氧气和磷掺杂碳上的沉积是甲酸脱氢反应仍然是一个挑战,但Xin等人。通过XPS揭示了磷掺杂的影响,即P掺杂会影响PD的电子特性增强其活性和催化剂稳定性[33]。
在古人类学研究中,牙科和骨遗迹是有关个人/人所属的个人和社区的生活史的不可替代的信息来源。近年来,物理化学(例如,放射性碳和铀,稳定的同位素分析,古元组学,痕量元素分析)和生物分子分析(例如,古代DNA,古蛋白质组学)的应用已彻底改变了骨科学和古人类人类学学的领域。即使在大多数情况下,它们涉及破坏性或微观破坏性分析,但它们的应用已在生物考古学领域中变得基本,从而可以检索通过使用其他非破坏性方法无法访问的信息(例如,Bortolini等,2021; Lugli等,2019,2018; Nava等,2020; Slon等人,2018年; Sorrentino等,2018)。因此,需要进行标准方案来计划集成恢复,甚至在收集样品之前,需要考虑标本的保存状态(大小和形态,以及物理化学特性)及其在恢复后的可能使用(例如,进一步的科学研究,进一步的科学研究,展览,展览,教学)。
摘要 - 云已经代表了全球能源消耗的重要组成部分,并且这种消费不断增加。已经研究了许多解决方案,以提高其能源效率并降低其环境影响。然而,随着新要求的引入,特别是在延迟方面,云互补的架构正在出现:雾。雾计算范式代表一个靠近最终用户的分布式体系结构。在最近的作品中不断证明其必要性和可行性。然而,它对能源消耗的影响通常被忽略,尚未考虑可再生能源的整合。这项工作的目的是考虑可再生能源的整合,展示能量良好的雾建筑。我们探讨了三种资源分配算法和三个合并策略。基于实际痕迹,我们的仿真结果表明,在雾环境中节点的固有低计算能力使得很难利用可再生能源。此外,在此上下文中,计算资源之间的通信网络消费量的份额以及通信设备更难通过可再生能源来供电。