请启用 JavaScript 以查看页面内容。您的支持 ID 是:8203161999611281366。这个问题是为了测试您是否是人类访问者并防止自动提交垃圾邮件。
心血管疾病是全球性的全球健康问题,在全球范围内促进了发病率和死亡率。在这些疾病中,心律不齐的特征是心律不规则,提出了巨大的诊断挑战。这项研究介绍了一种使用深度学习技术,特别是卷积神经网络(CNN)的创新方法,以解决心律不齐分类的复杂性。利用多层心电图(ECG)数据,我们的CNN模型,包括六层带有残留块的层,在识别五种不同的心跳类型方面表现出了令人鼓舞的结果:左束分支块(LBBB),右束分支块(RBBB),右束支(RBBB),tryal buntial Efferatial Efferatial Promature Contract(apc),thematial Efferatial Contract(APC),phatcral andultral andultral andultral and andult andultral and anductal and p. pvC(PVC)(PVC),PVC。通过严格的实验,我们强调了我们方法学在增强心血管心律不齐的诊断准确性方面的变化潜力。
最近,Visual Transformer(VIT)及其以下作品放弃了卷积,并利用了自我发项操作,比CNN获得了可比甚至更高的精度。最近,MLP-Mixer放弃了卷积和自我发项操作,提出了仅包含MLP层的体系结构。为了实现交叉补丁通信,除了通道混合MLP外,它还设计了其他令牌MLP。在诸如JFT-300M之类的极限数据集上进行训练时,它会取得令人鼓舞的结果。,但是当在ImagEnet-1k等中等规模的数据集上训练时,它的表现不如其CNN和VIT对应。MLP混合使用的性能下降激励我们重新考虑令牌混合MLP。我们发现,MLP混合中的令牌混合操作是深度卷积的变体,具有全局接收场和空间特异性配置。在本文中,我们提出了一种新颖的纯MLP体系结构,即空间移位MLP(S 2 -MLP)。不同于MLP混合器,我们的S 2 -MLP仅包含通道混合MLP。我们设计了一个空间换档操作,以实现通过补丁之间的通信。它具有局部接收场,是空间的 - 不可知论。同时,它无参数且有效地计算。在Imagenet-1K数据集训练时,提出的S 2 -MLP比MLP混合剂具有更高的识别精度。同时,S 2 -MLP在ImageNet-1k数据集上具有出色的性能,具有更简单的架构,较少的失败和参数。
人工神经网络(ANN)是一个信息或信号处理系统,由大量简单的处理元素组成,这些元素与直接链接互连,并配合以执行并行分布式处理以解决所需的计算任务。神经网络以类似的方式处理信息。ann的灵感来自生物神经系统的方式,例如大脑的作品 - 神经网络以身作则。ANN采用与常规计算相比,解决问题的方法。传统的计算机系统使用算法方法,即遵循一组说明以解决问题。将解决问题的能力限制在我们已经理解并知道如何解决的问题上。但是,神经网络和常规算法计算不在竞争中,而是相互竞争。有些任务更适合于算法方法(例如算术操作)和更适合神经网络方法的任务。
On-On-On-On-Orbit服务(OO)包括一系列服务类型,以增加卫星的寿命及其性能,并确保它不会助长太空碎片的日益增长的问题。鉴于“巨型构成”的兴起,避免卫星被遗弃的人尤其重要。 在1970年代的第一个案件中,使用从地面或宇航员控制的机器人和机器人(例如在维修和升级到哈勃太空望远镜(HST)和国际空间站(ISS))中,使用了从地面或宇航员控制的机器人多次实现了OOS。 这使各种太空机构和其他组织可以为多种OOS任务类型的成熟流程和工具。鉴于“巨型构成”的兴起,避免卫星被遗弃的人尤其重要。在1970年代的第一个案件中,使用从地面或宇航员控制的机器人和机器人(例如在维修和升级到哈勃太空望远镜(HST)和国际空间站(ISS))中,使用了从地面或宇航员控制的机器人多次实现了OOS。这使各种太空机构和其他组织可以为多种OOS任务类型的成熟流程和工具。
卷积在 CNN 操作中占主导地位,占运行时间的 90% 以上。尽管这些操作可以利用高度并行的计算范例,但由于伴随的带宽要求,吞吐量可能无法相应扩展,并且由于数据移动可能比计算更昂贵,因此能耗仍然很高。
在这项工作中,我们证明,由于现有评估协议和数据集中的不足,因此有必要重新审视并全面研究Mul-timodal零射击学习(MZSL)问题问题。具体来说,我们解决了MZSL方法面临的两个主要挑战。 (1)既定基线的情况通常是无与伦比的,而且有时甚至是有缺陷的,因为现有的评估数据集通常与培训数据集有一些重叠,因此违反了零照片范式; (2)大多数现有的方法都偏向可见的类,这在对可见和看不见的类别进行评估时会大大降低性能。为了应对这些挑战,我们首先引入了一个新的多模式数据集,用于零照片评估,称为MZSL-50,其中有4462个视频来自50个广泛多元化的类别,并且与培训数据没有重叠。此外,我们提出了一种新型的多模式零射击变压器(MZST)体系结构,该体系结构利用了吸引瓶颈进行多模式融合。我们的模型可以直接预测语义表示,并且在将偏见降低到可见的类别方面表现出色。我们进行了广泛的消融研究,并在三个基准数据集和我们的新型MZSL-50数据集上实现最先进的结果。具体来说,我们提高了传统的MZSL绩效2。1%,9。81%和8。 vgg-sound,UCF-101和ActivityNet的68%。 最后,我们希望引入MZSL-50数据集将促进对社区中多模式零射击的深入研究。 181%和8。vgg-sound,UCF-101和ActivityNet的68%。最后,我们希望引入MZSL-50数据集将促进对社区中多模式零射击的深入研究。1
摘要本文介绍了GSCORE,这是一个硬件加速器单元,该单元有效地执行了使用算法优化的3D Gauss-ian剥落的渲染管道。GSCORE基于对基于高斯的辐射场渲染的深入分析的观察,以提高计算效率并将技术带入广泛采用。在此过程中,我们提出了几种优化技术,高斯形状感知的交叉测试,分层排序和下图跳过,所有这些都与GSCORE协同集成。我们实施了GSCORE的硬件设计,使用商业28NM技术进行合成,并评估具有不同图像分辨率的一系列合成和现实世界场景的性能。我们的评估要求表明,GSCORE在移动消费者GPU上实现了15.86倍的速度,其面积较小,能源消耗较低。
Vz@k|x$]5_,UiUdUiUdUdUdUiUiUdUiUdUiUiUdUiUdUdUdUiUiUdUiUdUiUiUdUiUdUiU{UiUiUdUiUdUiUiUdUiUdUiUiU{UiUdUiUdUiUiUdUiUdUiUiUdUdUdUiUdUiUiUdUiUdUiUiUdUiU{UiUdUiUiUdUiUdUiUiUdUiUdUdU