摘要:深度学习(DL)已成为现代人工智能(AI)的核心组成部分,通过促进复杂系统的分析,从生物学的蛋白质折叠到化学和物理学中的粒子相互作用,通过促进了各种领域的显着进步。但是,深度学习领域正在不断发展,并且在架构和应用中都有最新的创新。因此,本文对最近的DL进展进行了全面的综述,涵盖了卷积神经网络(CNNS)(CNN)和经常性神经网络(RNNS)等基础模型的演变和应用,以及最近的体系结构,例如变形金刚,诸如变形金刚,生成性对抗性网络(GANS),CAPSULE Networks,Capsule Networks和Graph Neural网络和图形神经网络(GNNS)(gnns)(GNNS)(GNNS)(GNNS)(GNNS)(GNNS)。此外,本文讨论了新颖的培训技术,包括自我监督的学习,联合学习和深入的强化学习,这进一步增强了深度学习模型的能力。通过综合最新的发展并确定当前的挑战,本文提供了有关DL研究的最新状态和未来方向的见解,为研究人员和行业专家提供了宝贵的指导。
该项目从一个患有运动神经元疾病的人安东尼·沃尔什(Anthony Walsh)的家中进行的服务机器人的试验中汲取灵感。在审判期间,安东尼传达了这种疾病如何极大地影响了他的身体和情感健康,并分享:“这是非常非常难以应付的,尤其是因为这意味着我失去了行动能力。我必须取决于他人,这不是我的人。我非常非常独立。”安东尼还提出了一个愿景,即辅助机器人如何以有限的流动性为像他这样的人提供支持,他说:“诸如拿起纸巾,打开冰箱并从架子上取回物品之类的事情。它使您有所帮助。它将为他人准备时间,这样他们就不必总是在您的贝克上打电话,让他们有自己的时间返回。”这强调了辅助机器人可以提供的至关重要的独立性,尤其是在照顾有局限性的人辅助机器人对社会抱有巨大的希望,提供了潜在的好处,例如扩大社会护理服务,促进独立性和减少孤独感。仍然存在一个批判性的挑战:当今的机器人仍然很难理解,预测和适应其人类伴侣的细微行为。人类的行为是丰富,多样化的,而且通常是不可预测的。虽然操纵等任务受益于广泛的Internet规模数据集,但人类机器人相互作用却没有等效。然而,最新运动合成的发展提出了令人兴奋的解决方案。收集有关人类机器人相互作用的数据是昂贵,复杂的,并带来了道德和隐私挑战,尤其是在诸如个人护理之类的敏感环境中。基于变压器或扩散技术的模型表明它们可以使用最小输入(例如文本命令或用户定义的轨迹)生成现实的人类行为。这些进步开放的机会以数字方式模拟人类行为,从而创建了人类和机器人的“数字双胞胎”。这样的仿真可以为机器人提供多种多样的受控培训环境,从而使它们能够在现实世界中部署之前发展自适应行为。
摘要。成功的智能服务需要无缝集成到现有的公司系统中,并采用跨学科的方法,以使商业模型和技术体系结构的开发保持一致。多学科和与客户共同创建的添加一层复杂性,但是验证智能服务价值主张和建立长期客户忠诚度的重要协作方案。本文探讨了这些挑战,并根据两家制造公司的建筑项目的经验数据来提取技术智能服务系统架构的规定原则。这些原则有助于有关该主题的稀疏学术文献,并有助于实践者在智能服务项目中通常引起的几种设计权衡。
循环神经网络 (RNN) 在神经 NLP 的早期阶段具有变革性(Sutskever 等人,2014 年),并且与 Transformers 等较新的架构相比仍具有竞争力(Orvieto 等人,2024 年)。如今,量子计算也正在成为一种潜在的变革性技术(Preskill,2018 年),我们很自然地会考虑 NLP 模型的量子版本,比如 RNN,并问它们是否比经典模型具有任何优势。在这里,我们开发了基于参数化量子电路 (PQC) 的单元量子 RNN。PQC 可用于提供一种混合量子经典计算形式,其中输入和输出采用经典数据的形式,而控制 PQC 计算的一组参数是经过经典优化的(Benedetti 等人,2019 年)。量子计算之所以令人兴奋,是因为它能让我们高效地解决问题或运行模型,而这些在传统计算机上无法高效运行(Nielsen and Chuang,2000)。量子硬件的快速发展意味着
我们介绍了一种减少合成蛋白质成本和由生成模型设计的其他生物学的成本的方法。,我们使我们的生成模型制造模型可以使模型设计的序列可以在现实世界中有效合成,并具有极端的并行性。我们通过训练和合成样品来证明抗体,T细胞抗原和DNA聚合酶的生成模型。例如,我们对3亿观察到的人类抗体进行训练,并合成该模型的10 17生成的设计,以10 3美元的价格实现了与先进的蛋白质语言模型相当的样品质量。使用以前的方法,综合具有相同精度和大小的库将花费大约四亿(10 15)美元。
摘要 — 使资源有限的机器人能够执行计算密集型任务(例如移动和操作)是一项挑战。本项目提供了全面的设计空间探索,以确定适合基于模型的控制算法的最佳硬件计算架构。我们对通用标量、矢量处理器和专用加速器中的代表性架构设计进行了分析和优化。具体来说,我们使用内核级基准和端到端代表性机器人工作负载来比较标量 CPU、矢量机和领域专用加速器。我们的探索提供了定量的性能、面积和利用率比较,并分析了这些具有代表性的不同架构设计之间的权衡。我们证明架构修改、软件和系统优化可以缓解瓶颈并提高利用率。最后,我们提出了一种代码生成流程,以简化将机器人工作负载映射到专用架构的工程工作。
收到:2024年6月21日修订:2024年8月3日接受:2024年8月26日发布:2024年9月30日摘要 - 去年在几个领域中使用了图像处理技术,包括教育,研究,铁路和其他部门。CNN(卷积神经网络)通常被视为图片分类的最有效方法。这项研究包括使用CNN体系结构:Restnet50V2,Restnet152v2,Xception,IntectionV3和MobilenetV2的五种著名的图像处理算法。我们评估了Dehradun DataSet北阿兰奇大学的分类,该数据集有20个不同的部门照片进行分类。在一定的迭代之后,我们的主要目标是使用可用的硬件实现最佳的模型精度。为了评估绩效,我们使用了其他措施,例如准确性,召回和F1得分。调查证明了所有五种算法的特殊精度:Restnet50V2(98.88),Restnet152v2(99.10),Xpection(99.17),InceptionV3(99.2)(99.2)和MobiLENETV2(93.71)。由于其卓越的准确性,选择了X Ception方法进行数据培训,测试和验证。硬件资源,内存能力和数据多样性。这项研究阐明了CNN模型的性能,并帮助公司和大学选择更好的照片分类算法。这项研究还提高了机器学习和深度学习算法,以及它们在现实情况下的实际应用。
我们介绍了一种减少合成蛋白质成本和由生成模型设计的其他生物学的成本的方法。,我们使我们的生成模型制造模型可以使模型设计的序列可以在现实世界中有效合成,并具有极端的并行性。我们通过训练和合成样品来证明抗体,T细胞抗原和DNA聚合酶的生成模型。例如,我们对3亿观察到的人类抗体进行训练,并合成该模型的10 17生成的设计,以10 3美元的价格实现了与先进的蛋白质语言模型相当的样品质量。使用以前的方法,综合具有相同精度和大小的库将花费大约四亿(10 15)美元。
我们介绍了一种减少合成蛋白质成本和由生成模型设计的其他生物学的成本的方法。,我们使我们的生成模型制造模型可以使模型设计的序列可以在现实世界中有效合成,并具有极端的并行性。我们通过训练和合成样品来证明抗体,T细胞抗原和DNA聚合酶的生成模型。例如,我们对3亿观察到的人类抗体进行训练,并合成该模型的10 17生成的设计,以10 3美元的价格实现了与先进的蛋白质语言模型相当的样品质量。使用以前的方法,综合具有相同精度和大小的库将花费大约四亿(10 15)美元。
代码调制视觉诱发电位 (cVEP) 在脑机接口 (BCI) 社区中越来越受欢迎 [1]。这种方法采用伪随机视觉闪烁,具有校准时间短等优势,因为只需要学习一个代码。其他解码方法,如按位解码 [2],已经实现了具有灵活解码周期的自定节奏 BCI。尽管取得了这些进步,但基于 cVEP 的 BCI 仍然主要在实验室环境中进行研究,因为每次使用前都需要重新校准。这一限制与所有 BCI 范式共有的跨会话和跨受试者差异有关。BCI 的这些差异源多种多样 [3],包括解剖学差异(例如灰质数量变化)、人为因素(例如教育水平和生活习惯差异)或生理因素(例如疲劳、注意力水平和压力水平)。此外,神经生理学差异(例如特定频率范围内频谱功率调制的变化)也会导致这些变化。为了解决这些变化源,人们进行了广泛的研究 [4, 3] 以提出新方法。评估迁移学习方法有两种主要设置,具体取决于目标对象可用的信息量。在最独立的设置中,称为领域泛化,没有来自目标对象的信息,因此模型是在数据上进行训练的