新闻稿截至2025年2月28日,截至2025年2月28日,截至2025年2月28日,斯德哥尔摩的股票和投票数量,20125年2月28日 - 2025年2月28日 - 生物AB(Publ)(纳斯达克斯德哥尔摩:BIOA:BIOA B)宣布,该公司今天宣布,2月,该公司在139,450级库存中宣布了139,450年级的股票,该股票的股票销售额为2002年,股份的股票股份。 2019年5月9日会议。股票是通过行使2019/2028系列的139,450种选择而发行的。截至2025年2月28日,即本月的最后一个交易日,生物AB的股票总数为88,528,485股,其中74,128,489份B级股票和14,399,9996级非属于A级的股票。A股每股有10票,B股每股有一票。该公司的票数总数为218,128,449。---此信息是生物北极义务根据《金融工具贸易法》公开公开的信息。该信息已于2025年2月28日在CET下方通过以下联系人的代理发布,以供公开披露。
生物座席或生物库对于海洋科学至关重要。他们的收藏品维护生物学知识,实现后续研究和可重复性确认,并有助于扩展生态基准。BiorePository网络和数据门户汇总目录,并促进开放数据和材料交换。这种整合丰富了上下文数据,并支持基于整体生态系统的研究和管理。在北极,研究人员面临巨大的规模,迅速变化的生态系统以及有限的重新采样机会,生物群体建立了能力。但是,在收藏中,海洋和极地生物多样性的代表性不足。异质方法和文档实践阻碍了数据集成。和开放科学面临高机构和文化障碍。在这里,我们探讨了生物群体扩大各个海洋研究影响的潜力。我们解决了标准化和凭证方面的差距,并建议改进资金和发布模型,以激励协作。我们将呼吁从不同的角度召集了生物群的呼吁,并提供了探险,数据库,标本收集和标准的示例。通过两个案例研究进行了总体分析,展示了该领域的范围:将公民科学观察纳入鲸类监测中,并保存在环境微生物组研究中标本。在前者中,我们建议将数据收集的策略纳入全球数据库。在后者中,我们提出了合作领域的收集和完整的生活微生物组(复杂的微生物社区)冷冻保存。我们的观点将生物群作为合作研究策略,对于在当前与气候变化相关的压力下加速科学至关重要。我们倡导国际投资作为北极生物多样性遗产的学术和保护管理的预防措施。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年2月13日发布。 https://doi.org/10.1101/2025.02.13.638097 doi:Biorxiv Preprint
• 本演示文稿包含前瞻性陈述。这些前瞻性陈述涉及已知和未知的风险、不确定性和其他因素,可能导致 BioArctic 的实际结果、业绩、成就或行业业绩与这些前瞻性陈述明示或暗示的结果存在重大差异。前瞻性陈述仅代表本演示文稿发布之日的观点,BioArctic 明确表示不承担因 BioArctic 预期发生任何变化或这些前瞻性陈述所依据的事件、条件或情况发生任何变化而发布本演示文稿中任何前瞻性陈述的任何更新或修订的义务或承诺。
2024年第四季度的活动•澳大利亚药品局(TGA)决定不批准李卡纳姆布。Eisai has requested a reconsideration • The phase 3 study AHEAD 3-45 in preclinical Alzheimer's disease was fully recruited • Eisai completed the stepwise application for subcutaneous maintenance therapy with Leqembi in the US • New data for the BrainTransporter technology was presented, showing a dramatic increase of antibody delivery to the brain • Eisai lowered Leqembi outlook for fiscal year 2024年(2024年4月 - 2025年3月)。销售预计将达到JPY 42.5 B•EMA的咨询委员会CHMP发出了积极的建议,以批准欧盟的LeCanemab•Bioarctic与Bristol Myers Squibb(BMS)签署了一项全球独家许可协议(BMS),以提供生物极低的抗体的BAN1503和BAN2803。该协议正在等待批准,值得超过1.35 B加版本
我们工作的重点是改善气候模型中异常的解释性,并促进我们对北极熔体动态的理解。北极和南极冰盖正在迅速融化并增加了淡水径流,这显着导致了全球海平面上升。了解在这些地区驱动融雪的机制至关重要。ERA5是极地气候研究中广泛使用的重新分析数据集,可提供广泛的气候变量和全球数据同化。但是,其融雪模型采用了一种能量不平衡的方法,可能会过度简化表面熔体的复杂性。相反,冰川能量和质量平衡(GEMB)模型结合了其他物理过程,例如积雪,FIRN致密化和融化液化/重新冻结,提供了表面熔体动力学的更详细的表示。在这项研究中,我们专注于分析格陵兰冰盖的表面融雪材料,并使用ERA5和GEMB模型中异常熔体事件的特征归因。我们提出了一种新型的无监督归因方法,利用反对解释方法来分析ERA5和GEMB中检测到的异常。我们的异常检测结果通过模仿地面真实数据进行验证,并针对既定的特征排名方法进行了评估,包括XGBoost,Shapley值和随机森林。我们的归因框架标识了每种模型背后的物理和气候特征驱动熔体异常的特征。这些发现证明了我们的归因方法在增强气候模型中异常的解释性并促进我们对北极熔体动力学的理解方面的实用性。
• 专业知识:审稿人应具备北极茴鱼或类似物种生物学方面的知识或经验。 • 独立性:审稿人不应受雇于本局。如果政府支持其工作,学术、咨询或政府科学家应具有足够的独立性,不受本局的约束。 • 客观性:审稿人应得到同行的认可,被认为是客观、开放和深思熟虑的。此外,审稿人应乐于分享自己的知识和观点,并公开指出自己的知识空白。 • 利益冲突:审稿人不应有任何冲突或可能损害其客观性或造成不公平竞争优势的经济或其他利益。如果其他合格的审稿人存在不可避免的利益冲突,本局可公开披露该冲突。虽然专业知识是主要考虑因素,但本局将选择同行审稿人(考虑但不限于这些选择),以增加与北极茴鱼物种状况评估报告相关的多样化科学观点。我们不会向同行审稿人提供经济补偿。我们将征求至少三位合格专家的评论。
摘要 — 部署在北极苔原 (AT) 等资源匮乏环境中的信息物理系统面临极端条件。部署在这种环境中的节点必须谨慎管理有限的能源预算,迫使它们交替进行长时间的睡眠和短暂的正常运行时间。在正常运行时间内,节点可以通过向其他节点提供服务来协作进行数据交换或计算。在节点上部署或更新此类服务需要协调以防止故障(例如,发送新的/更新的 API、等待服务激活/停用等)。在正常运行时间较短的 CPS 中,由于通信机会较少,这种协调可能会耗能。本文根据不同的 CPS 配置(即节点数量、正常运行时间长度、无线电技术或中继节点可用性)评估和研究节点在部署或更新任务协调期间的能耗。结果表明,在节点专门唤醒以进行部署/更新的情况下,能耗较高。结果表明,在与现有正常运行时间重叠(即保留用于观察活动)的同时执行适应任务是有益的。本文还评估和研究了节点的正常运行时间和中继节点可用性如何影响能耗。增加正常运行时间可以减少能耗,最高可达 12%。使用可用的中继节点进行通信可将能耗降低 47% 至 99%。索引术语 —CPS、部署、更新、协调、Tundra、能耗
抽象的北极土壤经常受到空降,海洋或动物来源的微生物侵袭,这可能会影响当地的微生物群落和生态系统功能。然而,在冬季,北极土壤是从雪以外的外部来源分离出来的,这是微生物的唯一来源。通过雪微小的ISMS成功地殖民地殖民化,取决于入侵和居民社区的生存和竞争能力。使用浅shot弹枪元素测序和扩增子测序,本研究监测了整个雪融化的雪和土壤微生物群落,以研究北极土壤的定殖过程。由于观察到成功定殖的所有特征,因此可能发生微生物定植。源自雪的定植微生物已经适应了当地的环境条件,随后在北极土壤中经历了许多相似的条件。此外,与竞争相关的基因(例如运动和毒力)在雪样融化时在雪样中增加。总体而言,在土壤中发现了一百个潜在成功的殖民者,因此证明了熔融过程中土壤中雪微生物的沉积和生长。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作