摘要:冰的形成仍然是气候模型中代表最差的微物理过程之一。虽然已知主要的冰生产(PIP)参数化对建模的云特性具有很大的影响,但次级冰产生(SIP)的表示不完整,因此其相应的影响在很大程度上是毫无疑问的。此外,冰的聚集是总云冰预算的另一个重要过程,这在很大程度上也不受限。在这项研究中,我们使用挪威地球系统模型(Noresm2)研究了PIP,SIP和ICE聚集对北极云的影响。具有预后和诊断PIP的模拟表明,仅异质冻结不能再现观察到的云冰含量。Noresm2中缺失的SIP机制(胶水分解,掉落和升华分解)的实施可改善建模的冰属性,而液体含量中的图案仅在预后PIP的模拟中发生。但是,结果对碰撞分裂的描述很敏感。这种机制在所检查的条件下占主导地位,对升华校正因子的治疗非常敏感,升华校正因子的治疗是一种受使用的参数的约束参数。最后,冰聚集处理的变化也可以显着影响云特性,这主要是由于它们对碰撞分手效率的影响。总体而言,通过添加SIP机制来增强冰产量和冰聚集的减少(与浅北极云的雷达观察一致)导致云层覆盖率和降低TOA辐射偏见,与卫星测量相比,尤其是在寒冷的月份。
摘要:参与耦合模型比较项目(CMIP)的模型表现出北极海冰气候的巨大偏见,这似乎与季节性大气和海洋循环中的偏见有关。使用1979年至2014年的34个CMIP6模型的历史运行,我们研究了9月的气候海冰浓度(SIC)偏见与大气和海洋模型气候之间的联系。9月SIC的主要模型传播由两个领先的EOF很好地描述,共同解释了。其65%的差异。第一个EOF代表整个北极中SIC的低估或高估,而第二个EOF描述了大西洋和PACIFIC部门的SIC偏见相反。回归分析表明,这两种SIC模式与夏季期间北极表面热孔的偏离密切相关,主要是短波和长波辐射,而传入的大西洋水则在大西洋部门发挥了作用。与夏季云覆盖,低级湿度,对流层温度/循环以及海洋变量的局部和全球联系。如三种气候模型所示,在北极在模型中与SIC偏差的局部关系大多相似,但显示出不同程度的大西洋流动影响。在全球范围内,建议在9月的夏季大气循环中对三种模型之一提出了强烈的影响,而大气影响主要是通过其他两个模型的热动力学。在其中一种模型中可以看到与北大西洋循环的明确联系。
- m。L. Druckenmiller,R。L。Thoman和T. A.2023年的月亮北极观测提供了清晰的证据,表明气候和环境变化迅速,由过去和正在进行的人类活动塑造,这些活动将温室气体释放到大气中,并将更广阔的地球系统推向未知的领土。本章提供了2023年的快照,并总结了整个北极观察到的数十年趋势,包括变暖的地表空气和海面温度,降低雪覆盖,降低海冰,融化多年冻土,并继续造成绿地冰层和北极冰川造成的质量损失。这些变化正在推动过渡到更湿,更绿,更少的冰冻北极,对北极人民和生态系统以及低位和中低位都有严重的影响。
前言。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>iii div>
美国海军战争学院赞助了纽波特北极学者倡议(NASI),以评估对北极政策的当前和至关重要的问题,并为决策者提供具体的判断和建议。在背景和观点上多样化,NASI学者旨在通过私人审议就发现和建议达成有意义的共识。一旦启动,NASI就独立于NWC,并对其报告的内容负责。NASI学者被要求加入共识,这意味着他们认可“集团达成的一般政策和判断,尽管不一定是所有发现和建议。”每个NASI学者还可以选择提出额外或不同意的观点。学者的隶属关系仅用于识别目的,并不意味着机构认可。NASI观察者参加讨论,但没有要求加入共识。
最近的北极气候变暖引起了北极海洋(AO)海冰厚度和范围的逐渐逐渐下降(Comiso等,2008; Kacimi&Kwok,2022; Kwok,2018; Laxon et al。 AO表面变暖趋势(Z. Li等,2022; Shu等,2022; Steele等,2008),主要是由于有据可查的气候变暖趋势(Rantanen等,2022)。然而,当前AO分层的空间和时间变化似乎不仅受海冰融化和海洋变暖的控制,而且还通过风和河流淡水径流的强度来控制(Hordoir等,2022年)。此外,即使是亚极区域(大西洋和太平洋)的水质量对流的变化也可以改变AO分层(Polyakov等,2020)。海冰融化和积聚的季节性周期强烈调节AO植物浮游生物的生命周期(Janout等,2016)。Kahru等。 (2010,2016)使用遥感观察结果表明,在近几十年以前的春季浮游植物布鲁姆(SPB)时,春季浮游植物的时机(SPB)的时机发生了,并假设这是由于气候变暖驱动的海冰的较早破裂所致。 在温带和高纬度海洋中,SPB通常开始其发育,这是由于水柱的季节性增加引起的光限制(Siegel等,2002)是由对流驱动的混合减少引起的(Mignot等人,2018年)。Kahru等。(2010,2016)使用遥感观察结果表明,在近几十年以前的春季浮游植物布鲁姆(SPB)时,春季浮游植物的时机(SPB)的时机发生了,并假设这是由于气候变暖驱动的海冰的较早破裂所致。在温带和高纬度海洋中,SPB通常开始其发育,这是由于水柱的季节性增加引起的光限制(Siegel等,2002)是由对流驱动的混合减少引起的(Mignot等人,2018年)。物理海洋的这些特定条件使海洋浮游植物可以在舒适的区域中度过足够的时间,从而提高了细胞的倍增率并超过其死亡率。这些环境条件即使在极地海洋中也可以触发SPB(Behrenfeld等,2017; Uchida等,2019),其中
米切尔·布什克(Mitchell Bushuk),位于撒哈拉阿里(Sahara Ali),b david A. Bailey,C Qing Bao,D LaurianeBatté,E Uma S. Bhatt,E Edward Blanchard-Wrigestworth,G Ed Blockley,G Ed Blockley,Hgavin Cawley,Hgavin Cawley,i Junhaw Goulet I. Culllet Richlet I. Cullath,M,M,Kk Francis Dirkis X. diberial Exracu,QMaximilianGöbel,R William Gregory,S Virgini Guemas,T Lawrence Hamilton,U Bean He,D Senifer E. Caya,Uther,Uther,Elliot Kim,M Noriaki Kimura,N Dmitry Condrashov,Y Zachary M. CCED WISED LIN,DD YU’MASSONNET,GG WALTER N. pp Steefen Titsche, qq Michel Tsamadus, rr Keguang Wang, ss Jianwu Wang, b Wonqi Whee Yigo Wang, c Younghua, dad James Williams, bolun Yag, dedd Zhang, n and Youngfei Zhang s
米切尔·布什克(Mitchell Bushuk),位于撒哈拉阿里(Sahara Ali),b david A. Bailey,C Qing Bao,D LaurianeBatté,E Uma S. Bhatt,E Edward Blanchard-Wrigestworth,G Ed Blockley,G Ed Blockley,Hgavin Cawley,Hgavin Cawley,i Junhaw Goulet I. Culllet Richlet I. Cullath,M,M,Kk Francis Dirkis X. diberial Exracu,QMaximilianGöbel,R William Gregory,S Virgini Guemas,T Lawrence Hamilton,U Bean He,D Senifer E. Caya,Uther,Uther,Elliot Kim,M Noriaki Kimura,N Dmitry Condrashov,Y Zachary M. CCED WISED LIN,DD YU’MASSONNET,GG WALTER N. pp Steefen Titsche, qq Michel Tsamadus, rr Keguang Wang, ss Jianwu Wang, b Wonqi Whee Yigo Wang, c Younghua, dad James Williams, bolun Yag, dedd Zhang, n and Youngfei Zhang s