电子产品。 [1–3] 然而,电子设备数量的迅速增加引发了严重的环境问题,因为通过填埋不当处理科技废物、使用有毒物质以及大量的碳足迹对自然构成了巨大威胁。 [4] 由于回收利用往往不切实际且成本高昂,如果能够缩小与传统电子产品的性能差距,新兴的可降解电子产品将提供一种可持续的解决方案。 [5] 对于可拉伸系统,这对所用材料的机械性能提出了严格的要求。包括传感器在内的保形电子皮肤完全是柔软的,但为了达到高度的不可感知性,需要可拉伸的设备。 拉伸性使其对使用过程中的表面和变形的适应性更高。 [6] 此类设备的可生物降解版本需要开发与其保形性和可降解性相匹配的电源。 [7] 据报道,完全可降解超级电容器能够为手表供电,且具有高面积电容,但它们的低能量密度和负载下工作电压线性下降使得它们不适合耗电的电子应用。 [8,9] 另一方面,可拉伸电池提供稳定的工作电压和更长运行时间所需的高能量密度。 到目前为止,这些设备主要利用不可降解和有毒材料的优势。 [10–12] 虽然完全可降解软电池在功率输出方面有所改进,但它们还无法与不可降解设计相媲美,而且它们的可拉伸实现仍处于起步阶段。 [13–15] 刚性可降解电源通常利用镁、铁或钼等金属的高理论能量密度,但实现相同的可拉伸版本仍然是一个挑战。 [16,17] 此类金属通常几乎不表现出超出一定程度的不可逆延展性的固有拉伸性。这可以通过各种后处理方法(例如薄膜屈曲、刚性岛设计)来解决,但是,这些方法需要简单易行,并且不能过度损害性能。[18] 预拉伸基板上的电极膜屈曲虽然提供了可逆拉伸性,但迄今为止仅报道了不可降解电极材料,如聚二甲基硅氧烷-碳纳米管复合材料或金属化聚对苯二甲酸乙二醇酯 (PET) 箔。[19,20] 此类
oft和可拉伸的电子设备正在集成到下一代电子设备中,其中包括软机器人1,可穿戴电子2,生物医学设备3和人类 - 机器人界面4、5。在开发可拉伸传感器6,显示7,加热器8,储能设备9和集成电路(ICS)10的新颖材料和架构中取得了令人鼓舞的进步。但是,该领域仍然缺乏具有集成计算,有效的数据传输和微型电损失的高度可拉伸的多层电子电路。商业电子产品可以提供各种不引人注目的,廉价的,高性能的ICS,从微控制器到放大器,但是使用这些ICS创建可拉伸的电路需要每个电路元件之间的强大界面。在这项工作中,我们通过采用双相式镀机合金(BGAIN)来介绍可伸缩的印刷电路板(PCB)组件的可拉伸版本,从而创建了高度可拉伸的导电痕迹和柔软的刚性电子组件之间的耐用接口。正在积极研究三种主要策略,以实现可拉伸的电子设备:基于结构的可拉伸导体,本质上可拉伸的导体和导电复合材料。高导电性,不可延迟的薄金属膜可以几何图案化,以获得平面外变形和线性弹力10-13。尽管它们与传统的电子合并良好接触,但它们的可伸缩性和组分的面积密度通常受到限制。一种流行的方法,放置常规电子组件本质上可拉伸的导体,例如室温液体金属(Eutectic Callium-Indium,Egain 14),离子诱导器15和导电聚合物16,17-不需要复杂的图案,但每个苦难都需要复杂的,但每个遭受了几种苦难,包括几种吸水物,包括泄漏,脱落,脱何,脱何,递减,递减,递减和低电导率。导电夹杂物聚合物复合材料也可以在没有复杂图案的情况下拉伸,但通常患有最大菌株和高电阻18、19。此外,在菌株20、21期间,关于可拉伸导体的报告相对较少。已经大力努力在可伸缩零件和市售的高性能ICS之间建立可靠的连接。
摘要:硅是一种有希望的下一代阳极,可在商业石墨阳极上增加能量密度,但日历寿命仍然有问题。在这项工作中,使用扫描电化学显微镜来跟踪硅薄膜表面随时间表面的位点特异性反应性,以确定在形成的固体电解质相位相(SEI)(SEI)是否发生了不良的法拉达反应(SEI),在日历中,在四个情况下,在四个情况下,在1.5 v和100 mV之间的形式和1.1的形成(1)。 V和100 mV,随后的休息从(3)0.75 V和(4)100 mV开始。在所有情况下,硅的电钝化在3天的时间内随时间和潜力的增加而降低。随着钝化的减少,在500μm2面积上钝化的均匀性随时间降低。尽管反应性有一些局部“热点”,但钝化的面积均匀性表明全局SEI失败(例如,SEI溶解),而不是局部化(例如,破裂)失败。The silicon delithiated to 1.5 V vs Li/Li + was less passivated than the lithiated silicon (at the beginning of rest, the forward rate constants, k f , for ferrocene redox were 7.19 × 10 − 5 and 3.17 × 10 − 7 m/s, respectively) and was also found to be more reactive than the pristine silicon surface ( k f of 5 × 10 − 5 m/s).这种反应性可能是SEI氧化的结果。仅将细胞与li/li +截然不同时,表面仍在钝化(k f为6.11×10-6 m/s),但仍然比岩性表面(k f的3.03×10-9 m/s)少。这表明阳极的电势应保持在或低于〜0.75 v vs li/li +以防止SEI钝化。此信息将有助于调整电压窗口,以进行SI Half Half细胞和SI完整单元的操作电压以优化日历寿命。所提供的结果应鼓励研究界在日历老化期间研究化学而不是机械的故障模式,并停止使用1.5 V的典型惯例作为半细胞中循环SI的截止潜力。关键字:日历老化,硅,电池,SECM,钝化,SEI■简介
骨质疏松症和阿尔茨海默病 (AD) 都是全球性问题,尤其是在老龄人口比例不断增长的发达国家。骨质疏松症和 AD 都会随着年龄的增长而增加,缩短预期寿命 ( Yoshimura 等人,2009 年;Compston 等人,2019 年)。在 AD 中,在计算机断层扫描 (CT)、磁共振成像 (MRI) 和单光子发射断层扫描 (SPECT) 等成像方式上可识别出大脑特定区域的萎缩或低灌注。这些发现是诊断 AD 患者的重要客观生物标志物 ( Ito 等人,2014 年),意味着参与认知功能的神经网络已被破坏。流行病学研究表明,面积骨密度 (BMD) 降低和骨质流失率增加与认知能力下降和 AD 风险增加有关( Yaffe 等,1999;Zhou 等,2014;Kang 等,2018;Lv 等,2018)。这种关系的一种解释是,全身稳态依赖于器官之间的串扰,这种串扰对于协调器官活动和确保其生理功能的适当调节至关重要。在这些观点中,最近出现了骨骼和大脑之间的相互作用,即所谓的“骨-脑串扰”( Rousseaud 等,2016)。骨骼不仅调节磷酸盐和钙的代谢,还分泌一种成骨细胞衍生的分子(例如骨钙素),这种分子似乎是通过调节大脑发育和认知功能来影响中枢神经系统的重要因素(Obri et al., 2018)。目前的研究报告称,低 BMD 与早期 AD 的全脑体积较小和记忆力缺陷有关,这表明与 AD 相关的中枢神经系统退化可能在骨质流失中发挥作用(Loskutova et al., 2009; Bae et al., 2019)。在之前使用脑 SPECT 灌注图像的研究中,我们证实了患有骨质减少和 AD 的老年女性的后扣带皮层存在低灌注(Takano et al., 2020)。尽管一些实质性报告表明骨质疏松症与 AD 之间存在关系,但与人类骨质流失相关的大脑具体地形特征尚未得到广泛描述。尤其是骨质流失是否会影响 AD 相关区域(例如海马、海马旁回、颞顶区、后扣带回和楔前叶)的区域结构改变仍不清楚。因此,我们假设,更好地了解骨质流失与 AD 相关区域地形变化之间的关联将为有效预防和治疗骨质疏松症和 AD 提供策略。
制造人工膜为人类提供洁净水,关键是制造出大小相似的通道。[2,3] 商业上使用的渗透膜大多由聚合物制成,其分子链通常随机排列,因此孔径分布较宽。[4] 合成纳米导管,如碳和氮化硼纳米管[5–7] 以及通过有机合成制成的孔[8] ,能够在分子水平上控制通道特性,并已被证明可以使水快速高效地流过它们。[5,6] 然而,制造直径小于 1 纳米 [3,9] 的孔隙仍然具有挑战性,这些孔隙可以阻挡 Na + 、K + 和 Cl – 等小离子。此外,将大量平行的通道组装成边界清晰的膜也是一项技术挑战。[3,4] 二维材料的出现为创建这种小通道提供了进一步的途径。近期的例子包括石墨烯中制成的亚纳米孔[10,11],以及在氧化石墨烯[12]和二硫化钼层之间组装的二维通道[13]。所得膜表现出选择性离子渗透,但仍然缺乏可以阻止所有离子通过的孔结构。因此,开发具有高离子选择性通道的新型二维材料是十分有必要的,这可以为先进的渗透膜奠定基础。为了应对这一挑战,有人提出利用分子自组装技术辅助辐射诱导交联来创建具有明确孔结构的单分子厚的碳纳米膜(CNM)。[14]我们最近报道了分子通过 Au(111) 表面由三联苯硫醇 (TPT) 单层制备的约 1.2 纳米厚的 CNM 进行传输。 [15] 单层纳米薄膜在低能电子作用下会断裂 TPT 前驱体中的 C H 键,将高度有序的分子结构转化为坚固的可转移交联碳网络(图 1a)。这些纳米膜可允许极高的水流量,同时几乎不渗透非极性分子和原子。这归因于亚纳米通道的高面密度(≈ 10 18 m − 2 ,即每平方纳米 1 个亚纳米孔),极性水分子可以通过这些通道以单行传输。[15,16] 因此,通道密度远远超过其他纳米结构膜达到的≈ 10 14 –10 16 m − 2 。[5,10,17] 因此,这些膜代表了一种潜在的新型 2D 膜,可用于实现高性能
猕猴的腹侧额叶皮层由一组解剖上异质和高度相互联系的区域组成。总的来说,这些领域与许多高级情感和认知过程有关,最著名的是对决策的适应性控制。尽管有这种欣赏,但对在决策过程中腹侧额叶皮质的细分如何相互相互作用几乎没有什么了解。在这里,我们通过分析从猕猴中猕猴中的八个解剖学上定义的细分记录的数千个单个神经元的活性来评估区域之间的功能相互作用,这些神经元的腹侧额叶皮质的八个分区,用于执行视觉引导的两种选择性概率的任务。我们发现,刺激和奖励分娩的开始全球增加了腹侧额叶皮层之间的通信。在暂时特定的暂时性交流是通过区域之间的独特活动子空间发生的,并取决于决策变量的编码。特别是,12L和12o区域与其他区域的连接性最高,同时更有可能从腹侧额叶皮质的其他部分接收信息,而不是发送。这种功能连接的模式表明,这两个领域在决策过程中整合各种信息来源的作用。综上所述,我们的工作揭示了在决策过程中动态参与的腹侧额叶皮层的解剖连接细分之间的相互交流的特定模式。关键字:腹侧额叶皮质,轨道额皮层,渐变岛,奖励,决策,选择,结果,功能连接性介绍灵长类的腹侧额叶皮层在指导决策过程中指导自适应行为方面起着核心作用。When making a choice, neural activity within orbitofrontal cortex (OFC) and ventrolateral prefrontal cortex (vlPFC) represents the different attributes associated with the available options, such as the amount, effort, delay, risk, or probability that the option might be able to be obtained (Tremblay and Schultz, 1999; Padoa-Schioppa and Assad, 2006; Kennerley and Wallis, 2009年;The OFC and vlPFC, are not, however, anatomically homogeneous areas and each encompasses a number of distinct subdivisions that have been defined on the basis of sulcal anatomy, cytoarchitecture, and receptor density (Walker, 1940; Barbas and Pandya, 1989; Morecraft et al., 1992; Carmichael and Price, 1994; Rapan et al., 2023).最重要的是,解剖学跟踪研究表明,这些细分中的每一个都从大脑其他部位收到一套独特的投影(Barbas and Pandya,1989; Carmichael and Price,1995a,1995b,1996)。我们以前的神经生理记录研究还报道了腹侧额叶皮层(Stoll and Rudebeck,2024a)跨越腹部额叶细分的可分离编码模式,并且编码中的这种差异似乎
随着半导体器件的缩小尺寸出现饱和迹象,微电子学的研究重点转向寻找基于新颖物理原理的新型计算范式。电子自旋是电子的另一个固有特性,它为目前在微电子学中使用的基于电子电荷的半导体器件提供了附加功能。自旋电流注入、自旋传播和弛豫以及栅极的自旋方向操控等几个基本问题已成功得到解决,从而使电子自旋能够用于数字应用。为了通过电方法产生和检测自旋极化电流,可以采用磁性金属触点。Boroš 等人 [1、2] 讨论的铁磁触点应足够小,以构成具有明确磁化方向的单个磁畴。小畴的磁矩在过去曾被成功利用,现在仍用于在磁性硬盘驱动器中存储信息。由此,二进制信息被编码到畴的磁化方向中。畴的磁化会产生可检测到的杂散磁场。交变磁矩会产生方向相反的磁场。读头可以检测到磁场并读取信息。Khunkitti 等人 [ 3 ] 的研究显示,高灵敏度磁头是实现超高磁密度磁数据存储技术的重要因素。为了写入信息,需要通过流入磁头的电流产生接近磁畴的磁场。正如 Khunkitti 等人 [ 4 ] 所指出的,记录密度主要取决于磁性介质的特性。如果没有外部磁场,磁畴的磁化将得以保留,不会随时间而改变。因此,在电子设备中添加磁畴可实现非易失性,即无需外部电源即可保持设备功能状态的能力。此外,可以通过在小磁畴中运行自旋极化电流来操纵其磁化方向。如果电流足够强,磁畴的磁化方向与自旋电流极化方向平行。通过电子电流对磁畴进行纯电操控,为开发一种具有更高可扩展性的概念上新型的非易失性存储器提供了令人兴奋的机会。冲击自旋极化电流可以由流经另一个铁磁体的电荷电流产生,该铁磁体与小磁畴之间由金属间隔物或隧道屏障隔开。由两个铁磁触点组成的夹层结构的电阻在很大程度上取决于触点在平行或反平行配置中的相对磁化方向。因此,编码到相对磁化中的二进制信息通过夹层的电阻显示出来。这种新兴的存储器被称为磁阻存储器。磁阻存储器结构简单。它们具有出色的耐用性和高运行速度。磁阻存储器与金属氧化物半导体场效应晶体管制造工艺兼容。它们为概念上新的低功耗数据计算范式开辟了前景
激光测振有助于验证游丝空间结构 美国宇航局正在开发大型超轻型结构,通常称为游丝空间结构。这些结构面积大,面密度小,这大大增加了地面测试的复杂性,因为地面操作界面和重力负荷会变得繁琐。激光测振已被证明是一种验证这些游丝结构结构特性的关键传感技术,因为它具有精度高、范围广和无接触的特性。 简介 美国宇航局多年来一直在开发游丝空间结构,以降低发射成本并利用特定概念的独特功能。例如,碟形天线(图 1)目前正在开发中,因为它们可以在太空中充气至 30 米大,然后刚性化以实现高数据速率通信。游丝结构的另一个例子是太阳帆,它是一种经济高效的无推进剂推进源。太阳帆跨越非常大的区域,以捕获光子的动量能量并利用它来推动航天器。太阳帆的推力虽然很小,但却是连续的,在整个任务期间都不需要推进剂。材料和超轻薄薄结构方面的最新进展使得大量有用的太空探索任务能够利用太阳帆推进。在 NASA 空间推进办公室 (ISP) 的指导下,ATK 空间系统、SRS 技术和 NASA 兰利研究中心的团队开发并评估了一种可扩展的太阳帆配置(图 2),以满足 NASA 未来的太空推进需求。在地面上测试太阳帆给工程师带来了三大挑战:测量比纸还薄的大面积表面;环境条件下的空气质量负荷很大,因此需要进行真空测试;高模态密度需要将表面划分为更易于管理的区域。本文将重点介绍在 NASA Glenn Plum Brook 设施的空间动力设施 (SPF) 真空室中完成的 20 米太阳帆概念动态测试的独特挑战。真空测量 Polytec 扫描激光测振仪系统 (PSV-400) 是用于测量振动模式的主要仪器。激光扫描头被放置在加压罐内,以保护其免受真空环境的影响(图 3)。罐内有一个窗口端口,激光从该窗口端口射出,强制空气冷却系统可防止过热。开发并实施了扫描镜系统 (SMS),该系统允许在真空室内从超过 60 米的距离对帆进行全场测量。SMS(图 3)安装在真空室设施顶部附近,位于测试物体上方,而测振仪头安装在
在六个国家的人类和自然系统中,与工业前水平高1.5至4°C相关的风险,沃伦,r 1。*,价格,J 1。,forstenhäusler,n 1。,Andrews,o 2。,Brown,s 3。,Ebi K 4。,Ebi K 4。,Gernaat d 5。,Goodwin,P 6。,Guan,D 7。肯尼迪·阿瑟(Kennedy-Asser),A 2。 10,Vanvuuren D 5。,Wallace C 10。,Wang,D 11,12。荷兰PBL荷兰环境评估机构6英国南安普敦大学海洋与地球科学学院7地球系统科学系,欣杜阿大学,中国8号国际发展学院,UEA 9,UEA 9,南部科学与技术系,南部科学与科学大学,中国10号气候研究单元,环境研究单元,中国,UEA,UEA,UEA,UEA,UEA,UEA及其经济学,UEA及其经济学,UEA及其经济学。英国伦敦国王学院的地理系 *通讯作者摘要“六个脆弱国家的气候变化风险的应计”收集了一致评估人类和自然系统的风险,因为在六个国家 /地区,中国,巴西,埃及,埃及,埃及,埃塞俄比亚,加纳,加纳和印度的全球升温1.5-4°C,使用气候变化和社会的风险。如果变暖达到3°C,它会比较2100的风险,广泛地对应于当前的全球温室气体减少政策,包括国家的国家确定的贡献,而不是巴黎协议的目标,即将变暖限制在2°C以下和“追求努力”以限制为1.5°C的目标。全球人口在2000年的水平上是恒定的,或者在2100年之前增加到92亿。无论哪种情况,预计在所有六个国家 /地区都会有更大的变暖,以使土地和人们更大的暴露于干旱和河流洪水危害,生物多样性的下降越来越大,玉米和小麦产量的降低也会更大。将全球变暖限制为1.5°C,而与〜3°C相比,预计为所有六个国家带来了巨大的福利,包括由于河流洪水而减少经济损失。预计最大的好处是避免了农业土地暴露到严重干旱的大幅增加,埃塞俄比亚,中国,加纳,加纳和印度在1.5°C下比在3°C下低于61%,43%,18%和21%的人,而在3°C下,在1.5°C的严重干旱中,在1.5°C下的暴露在3°C下的增加是3°3°3°c,占地3°C占3°。在加纳,中国和埃塞俄比亚,植物的气候避难在1.5°C的温暖下,但在加纳,中国,印度,埃塞俄比亚,埃塞俄比亚和巴西分别缩小2、3、3、3、4和10倍的避难所,如果有3°C的升温。与海平面上升相关的经济损害预计将增加沿海国家,但如果变暖仅限于1.5°C,则会更慢。当地的实际利益还取决于国家和地方环境以及未来适应的投资程度。关键词气候变化,风险,人类系统,生态系统服务。
(Hidalgo等人,2022),这可能会阻止这种畸形,并且由于流产率未知。出于相同的原因,只有少数前瞻性,纵向和精心设计的Chiari II研究。In addition to the hallmark radiological findings [caudal displacement of posterior fossa content, inferior displacement of the cervical spinal cord, enlargement of ventricles, and (myelo)meningocele] in patients with Chiari II, there are a number of associated brain malformations [e.g., cerebellar hypoplasia ( Van den Hof et al.,1990年),胶体融合和直肠喙(Nagaraj et al。,2017年),Harrary Massa Intermedia和Habenular佣金和松果体的延伸(Gooding等人,1967年),call体和室脑周围淋巴结异构的失调(Hino-Shishikura等人。,2012年),颅神经和累加狭窄的发育不全(Tubbs and Oakes,2013)]。此外,Chiari II经常与次生发现有关,即脊柱异常[例如,platybasia(Cogan and Barrows,1954),脊柱侧弯(Cesmebasi etal。,2015年)],脊髓[,2011年),脂肪素细胞酯(Geerdink等人,2012年),Dibytyatomyelia(Parmar等人,2003)]和脑膜[,2012)]。这种相关发现的广泛调色板支持了Chiari II患者对整个中枢神经系统(CNS)和支持它的非CNS器官系统的发育异常的概念。,2008年; Kostovic和Vasung,2009年; Vasung等。此外,人胎儿脑发育的重要组成部分是瞬态胎儿室,其中包括心室区域,室内区域,中间区域,子板带,皮质板和边缘区(Bystron等人),2016年)。由于其中发生的事件,包括细胞增殖,迁移,突触发生,修剪,细胞死亡,面积的指定和轴突髓鞘形成,隔室是胎儿发育不可或缺的(Kostovic and Vasung,2009; Kang等人,2009; Kang等人。,2011年)。因此,表征Chiari II中瞬时胎儿区域的区域生长和发展可能与更好地理解其病理生理学有关。最后,尽管Chiari II的病理生理学仍然未知,但开放脊髓障碍(即腰椎脑膜关脉和/或脊髓脑膨出)之间的密切关联也表示赞成“ CSF泄漏理论”(McLone and Knepper,1989; McLone等; McLone等。根据该理论,后窝含量的尾部位移发生在脑脊液渗漏的脊柱泄漏处,这是由于神经孔的尾尾末端的非封闭末端引起的脊柱水平,大约在26天的受孕期间(Pexieder和Jelínek,Jelínek,1970; 1970; McLone and Kneperper and Kneperper,1989年)。此外,脑积水和脊椎队是与CSF相关的另外两个与Chiari II相关的发现,以及脑室的增大,这是一种与异常的产前脑发育有关的产前发现(Duy等。,2022b; Vasung等。,2022)。,2018年)。,2019,2021)和脑发育异常(Rollins等人,2021)。在脑力头的Chiari II患者中分流的产前或产后放置的大小与更好的神经发育结果没有联系(Houtrow等人因此,在某些情况下,其他可能会解释出更糟的神经发育结果。胎儿MRI目前用于量化区域脑体积并表征正常(Vasung等人因此,我们研究的目的是使用胎儿MRI来表征
