肿瘤坏死因子受体相关蛋白 1 (TRAP1) 是 HSP90 分子伴侣的线粒体同源物。它通过调节活性氧化物质 (ROS) 在防止氧化应激和细胞凋亡方面发挥重要作用。为了进一步阐明 TRAP1 在调节肿瘤细胞存活中的机制作用,我们使用了加米替尼-三苯基膦 (G-TPP) 来抑制结肠癌中的 TRAP1 信号通路。G-TPP 抑制 TRAP1 会破坏氧化还原稳态并诱导细胞死亡。然而,结肠癌通过诱导不同的 ER 应激反应和 ROS 积累,对 G-TPP 治疗表现出广泛的反应。有趣的是,使用 GSE106582 数据库观察到结肠肿瘤组织中 TRAP1 和抗氧化剂基因表达之间存在强烈的负相关性。使用荧光素酶报告基因检测,我们检测到 G-TPP 处理的 DLD1 和 RKO 细胞中抗氧化反应元件 (ARE) 的转录激活增加,但在 SW48 细胞中没有。我们发现 G-TPP 诱导 G-TPP 敏感细胞 (SW48) 中 GRP78、CHOP 和 PARP 裂解上调。相反,G-TPP 处理 G-TPP 抗性细胞 (DLD1 和 RKO) 导致过度
摘要:免疫检查点抑制剂(ICI)是各种恶性肿瘤的护理标准,并且与表型类似于原发性自身免疫性疾病的广泛并发症有关。尽管有关这些毒性的文献正在增长,但有关ICI相关性硬皮病的数据很少,这些数据可以带来显着的发病率,并限制了继续有效的ICI治疗的能力。我们的评论旨在分析有关ICI相关的系统性硬皮病(ICI-SSC)和关键硬皮病模仿的当前文献。ICI-SSC的病例与原代SSC有明显的差异,例如较少的血管特征和较少的血清阳性率(例如硬皮病特异性抗体和抗核抗体)。我们发现,在ICI开始之前诊断为SSC的患者在用于癌症的ICI治疗后也可能会经历曾经存在的疾病的浮标。关于硬皮病模仿,还描述了几例ICI嗜酸性筋膜炎病例,并具有可变的临床表现和课程。我们没有发现硬皮病模仿的病例:ICI-Scleromyxedema或ICI-Scleroedema。迫切需要多机构的努力来合作开发患者数据库并对ICI-SCLERODERMA进行强大的前瞻性研究。这最终将促进ICI-Scleroderma的更有效的临床评估和管理。
极快变异性的起源是Blazars伽马射线天文学中的长期问题之一。尽管许多模型解释了较慢,能量较低的可变性,但它们无法轻易考虑到达到每小时时间尺度的快速流动。磁重新连接是将磁能转化为重新连接层中相对论颗粒加速的过程,是解决此问题的候选解决方案。在这项工作中,我们在统计比较中采用了最新的粒子模拟模拟,观察到了众所周知的Blazar MRK 421的浮雕(VHE,E> 100 GEV)。我们通过生成模拟的VHE光曲线来测试模型的预测,这些曲线与我们开发的方法进行了定量比较,以精确评估理论和观察到的数据。通过我们的分析,我们可以约束模型的参数空间,例如未连接的等离子体的磁场强度,观察角度和大黄色射流中的重新连接层方向。我们的分析有利于磁场强度0的参数空间。1 g,相当大的视角(6-8°)和未对准的层角度,对多普勒危机的强烈候选危机进行了强大的解释,通常在高同步器峰值峰值的射流中观察到。
摘要:当今的技术发展使得使用机器代替人类执行特定任务成为可能。然而,这种自主设备面临的挑战是在不断变化的外部环境中精确移动和导航。本文分析了不同天气条件(气温、湿度、风速、大气压力、使用的卫星系统类型/可见卫星以及太阳活动)对定位精度的影响。为了到达接收器,卫星信号必须传播很长的距离并穿过地球大气层的所有层,大气层的变化会导致错误和延迟。此外,接收卫星数据的天气条件并不总是有利的。为了研究延迟和误差对定位的影响,对卫星信号进行了测量,确定了运动轨迹,并比较了这些轨迹的标准偏差。所得结果表明,可以实现高精度定位,但太阳耀斑或卫星可见度等变化条件意味着并非所有测量都能达到所需的精度。卫星信号绝对测量法的使用在很大程度上促成了这一点。为了提高 GNSS 系统的定位精度,首先建议使用消除电离层折射的双频接收器。
1拉丁美洲儿科感染学会主席,布宜诺斯艾利斯,阿根廷,2个感染性疾病部门,热带医学研究所,委内瑞拉中部,委内瑞拉,委内瑞拉3,儿童健康部3卡洛斯·萨恩兹·埃雷拉(CarlosSáenzHerrera) ños“ RicardoGutiérrez”,布宜诺斯艾利斯大学,布宜诺斯艾利斯,阿根廷,8号传染病疾病负责人和临床研究主管,医院DelNiño埃斯奎维尔(Esquivel),巴拿马,巴拿马9个儿科感染性疾病,医院,“JoséE。Gonzalez”,NuevoLeón自主大学,墨西哥Nuevo Leon,10放松,临床,阿根廷SANOTORIO ARGENIO,BUINOS ARES,阿根廷,13儿科学系,圣卡斯萨·德·鲍洛(Santa Casa de Sount),圣卡斯萨·德·保罗,巴西圣保罗,14个全球健康联盟,罗伯特·斯蒂姆(Robert STEM PLEL),公共健康和社交学院疾病,Centro Hospitalario Pereira Rossell,共和国大学医学院,蒙特维迪奥,乌拉圭,16岁哥伦比亚卡利瓦列大学医院儿科,17 哥伦比亚卡利瓦列大学医院儿科 CEIP 儿科传染病研究中心,18 美国田纳西州孟菲斯圣裘德儿童研究医院传染病科
我也很高兴在 3 月 14 日的 SHFG 颁奖典礼上,NASA 的历史将得到更多认可。该组织新设立的奖项之一是年度卓越新媒体奖,颁发给任何联邦政府机构或部门创建的数字化历史展览或项目,这些展览或项目有助于更广泛地了解联邦政府。该奖项还可以表彰代表联邦政府部门创建某些内容的非政府组织,包括联邦承包商。2020 年卓越新媒体奖将颁发给约翰逊航天中心 ARES 部门的 Ben Feist。如果您在想,“嗯……这个名字听起来很熟悉……”,您可能还记得我们在 2019 年夏季和冬季刊物或 NASA 网站上提到过 Ben 和他的作品。但您很可能是通过他在 https://Apollo17.orghttps://Apollo17.org https://Apollo17.org 和 Apollo 11 in Real Time 上的出色工作认识 Ben 的。 Ben 和一支出色的志愿者团队因“阿波罗 11 号实时”网站而受到 SHFG 的表彰。我希望历史节目能为这场令人惊叹的数字盛会赢得一些荣誉,但我们的贡献仅限于场外欢呼。尽管如此,当 Ben、Steve 和 Glen 因他们在 NASA 历史方面的工作而获得一对当之无愧的奖项时,我将在 SHFG 颁奖典礼上感到无比自豪。(附言:请等到 SHFG 和我们所有人看到 Ben 和他的团队为“阿波罗 13 号实时”准备了什么。)
Science, Lansing, MI, USA -At University of Luxembourg-Uni.Lu, Honorary Professor at Faculty of Science, Technology and Communication -At Luxembourg Institute of Science and Technology-LIST, the National Composite Center- Luxembourg (NCC-L), NCC-L Scientific director in 2016/17 -At Université Polytechnique Hauts-de-France, Invited Professor, Valenciennes, France -At Sichuan University, Plan 111 International Professor, Chengdu, China -At Zhejiang University-ZJU, Guest Professor at National Key-lab of Chemical Engineering Hangzhou, China Representative distinctions and involvements - Academician - Elected Titular Member of the “Académie Royale de Belgique” (Class of Sciences) (since 2010) - Elected member of the European Academy of sciences EurASc (Engineering science Division) ( since 2017 ) - Past President of the Belgium Royal Chemical Society (President in 2007/08 ) - Past Vice-Rector of University of Mons (in charge of research) (2005-2016) - President and scientific Director (since 1997) of Materia Nova asbl Research Center, Mons (B) - Honorary Research Associate by the Belgian National Funds for Scientific Research FNRS (B) - Member of Direction Boards of, e.g., f.r.s.-fnrs; Ares -AcadémieDeRecherche et enseignementSupérieur; CREF- conseil des Recteurs; Multitel Asbl,IMBC Spinova,Uphf-UniversitéPolytechniqueHauts-de-France。- 日本贝尔吉姆聚合物科学协会前任主席(日本/B,2016 - 2018年总裁) - 国际研究委员会/咨询委员会成员“ Ecole des Mines”,Alès(法国),
基于身份的加密(IBE),由Shamir于1984年推出,消除了对公钥基础架构的需求。发件人可以简单地使用收件人的身份(例如其电子邮件或IP地址)加密消息,而无需查找公钥。尤其是,当ibe方案的密文未揭示收件人的身份时,该方案被称为匿名IBE方案。最近,Blazy等人。(ARES'19)分析了匿名IBE公共安全与无条件隐私之间的权衡,并引入了一个新的概念,将可食用性纳入了匿名的IBE,称为匿名IBE,称为具有可追溯身份(AIBET)的匿名ibe。但是,它们的构造基于离散的对数 - 算法假设,这在量子时代是不安全的。在本文中,我们首先将跟踪AIBET计划的钥匙的一致性形式化,以确保没有对手可以使用错误的跟踪键获得信息。随后,我们提出了一个通用的伪造概念,该概念可用于将基于结构特定晶格的匿名IBE方案转换为AIBET方案。fi-Nelly,我们将此概念应用于Katsumata和Yamada的紧凑型匿名IBE方案(Asiacrypt'16),以获取第一个具有错误假设的环学习下安全的量子抗AIBET方案。
系统性红斑狼疮 (SLE) 是一种复杂的疾病,以自身免疫、炎症和不同程度的器官损伤为特征,这取决于发作的次数和严重程度,也取决于所接受的治疗。SLE 的管理通常具有挑战性。大多数指南将羟氯喹、糖皮质激素 (GC) 和有时的免疫抑制剂的组合称为“标准治疗”。此类疗法通常可以缓解疾病,但很多时候是以大量损伤为代价的。不可逆的器官损伤不仅在 SLE 中非常常见,而且考虑到大多数患者是年轻或中年女性,这一点尤其重要。根据越来越多的科学证据,不可逆损伤以及其他严重的副作用(如感染)与使用 GC 密切相关 [1-3]。事实上,最近更新的 EULAR 指南强调了预防器官损害和优化药物治疗策略的必要性,以改善健康相关的生活质量并实现患者的长期生存 [4]。本综述的目的是通过基于药理学和临床证据更新有关几种情况下 GC 最佳剂量的现有证据来回答十个日常临床实践问题,并就 GC 使用的“护理标准”提供我们的观点。
