除了常规的口腔卫生习惯外,抗菌漱口水通常用于预防细菌滋生和预防口腔微生物疾病。市售的漱口水主要含有氯己定、酒精和氟化钠等成分,这些成分具有抗菌特性。然而,它们的潜在副作用,如牙齿染色或味觉改变,促使人们需要既有效又副作用更少的新配方 [8,9]。到目前为止,还没有研究检查过氟化物漱口水中精氨酸对牙釉质再矿化的影响。因此,本研究旨在评估 L-精氨酸氟化物漱口水与氟化钠漱口水相比的再矿化潜力。这种方法可以潜在地改善治疗结果,同时保持氟化物在促进牙齿健康方面的益处。这项研究将分阶段进行,这是研究的第一阶段。
摘要 代谢异常是肿瘤的重要特征,谷氨酰胺-精氨酸-脯氨酸轴是肿瘤代谢的重要节点,在氨基酸代谢中起着重要作用,同时也是其他非必需氨基酸和必需代谢物合成的支架。本文就(1)肿瘤细胞对谷氨酰胺的依赖,谷氨酰胺转运和代谢加速;(2)谷氨酰胺进入细胞外、细胞内合成及细胞内谷氨酰胺命运的调控方式;(3)谷氨酰胺、脯氨酸和精氨酸代谢途径及其相互作用;(4)针对谷氨酰胺-精氨酸-脯氨酸代谢系统的肿瘤治疗研究进展作一综述,重点总结了针对该代谢系统关键酶之一P5CS(ALDH18A1)的治疗研究进展,为针对肿瘤代谢特点的治疗提供新的依据。
sirtuin 6(SIRT6)是一种多面蛋白脱乙酰基酶/脱酰基酶,也是小分子寿命和癌症的主要靶标。在染色质的背景下,SIRT6在核小体中去除组蛋白H3的乙酰基,但是其核小体底物偏好的分子基础尚不清楚。我们的冷冻 - 与核小体复合体中人类SIRT6的电子显微镜结构表明,SIRT6的催化结构域从核小体入门位点pries DNA pries DNA,并通过使用呼吸酶锚固的组蛋白酸性贴剂结合了组蛋白H3 N末端螺旋,而SIRT6 Zinc Zinc结合域则与SIRT6 Zinc 6 Zinc结合域结合。此外,SIRT6与组蛋白H2A的C末端尾巴形成抑制作用。该结构提供了有关SIRT6如何脱乙酰化H3 K9和H3 K56的见解。
背景:蛋白精氨酸甲基转移酶(PRMT)家族成员在癌症过程中具有重要作用。然而,它在调节肝细胞癌(HCC)的癌症免疫疗法中的功能尚不完全了解。这项研究旨在研究PRMT1在HCC中的作用。方法:获得单细胞RNA测序(SCRNA-SEQ)和临床病理数据,并用于探索HCC中PRMT1的免疫微环境调节中的诊断和预后价值,细胞功能以及在HCC中的PRMT1调节中的作用。使用基因和基因组(KEGG)和基因本体论(GO)以及基因集富集分析(GSEA)(GSEA)的基因和基因组(KEGG)和基因组学百科全书(GSEA)探索了PRMT1的功能。计时器和Cibersort用于分析PRMT1表达与免疫细胞浸润之间的关系。字符串数据库用于构建蛋白质 - 蛋白质相互作用(PPI)网络。结果:PRMT1在HCC中异常表达,高表达与HCC患者的肿瘤进展相关,总生存期(OS)和无病生存期(DFS)。PRMT1也与免疫细胞浸润有关。此外,它是在免疫细胞中特异性表达的,包括耗尽的CD8 T细胞,B细胞和单宏/宏观细胞。在HCC患者的高PRMT1表达组中,免疫检查点的表达显着增加。在PRMT1敲低HCC细胞中被抑制。此外,与PRMT1共表达的基因参与了脂肪酸代谢过程,并富含脂肪和药物诱导的肝病。结论:综上所述,这些结果表明PRMT1可能通过HCC中的免疫微环境调节和脂肪酸代谢发挥其致癌作用。我们的发现将为进一步的研究提供基础,并表明对肝癌的潜在临床治疗靶点。关键词:蛋白精氨酸甲基转移酶,PRMT1,预后,肿瘤浸润,脂肪酸代谢
描述:PRMT1 化学发光检测试剂盒旨在测量 PRMT1 活性,用于筛选和分析应用。PRMT1 化学发光检测试剂盒采用方便的形式,8 孔试纸条预涂有组蛋白 H4 肽底物、针对组蛋白 H4 甲基化精氨酸残基的抗体、HRP 标记的二抗、S-腺苷甲硫氨酸、甲基转移酶检测缓冲液和纯化的 PRMT1 酶,可进行 96 种酶反应。PRMT1 化学发光检测试剂盒的关键是一种高度特异性的抗体,可识别组蛋白 H4 甲基化的 R3 残基。使用此试剂盒,只需三个简单的步骤即可检测甲基转移酶。首先,将 S-腺苷甲硫氨酸与含有检测缓冲液和甲基转移酶的样品一起孵育。接下来,添加一抗。最后,用 HRP 标记的二抗处理试纸条,然后添加 ELISA ECL 底物以产生化学发光,然后可以使用化学发光读数仪进行测量。组件:
摘要:化学交换饱和转移 (CEST) NMR 实验已成为表征蛋白质动力学的有力工具。我们在此表明,CEST 方法可以扩展到具有对称交换的系统,其中所有交换物种的 NMR 信号都会严重加宽。为了实现这一点,引入了多量子 CEST (MQ-CEST),其中将 CEST 脉冲施加到纵向多自旋序密度元素上,并将 CEST 配置文件编码到未加宽的核上。MQ-CEST 方法在蛋白质内精氨酸残基中胍基的受限旋转上得到证明。这些基团及其动力学对于许多酶以及通过形成氢键、盐桥和 π 堆积相互作用进行的非共价相互作用至关重要,并且它们的旋转速率高度表明了形成的相互作用的程度。 MQ-CEST 方法成功应用于 T4 溶菌酶 19 kDa L99A 突变体中的胍基。
胆管癌 (CCA) 是一组预后较差的异质性肝胆肿瘤。晚期 CCA 传统上根据解剖位置细分为肝内胆管癌 (iCCA) 和肝外胆管癌 (eCCA)。最近,基因组学的进展部分揭示了 CCA 复杂的分子图景,为新的治疗机会提供了新的见解,并为 40% - 55% 的 CCA 患者开启了精准肿瘤学时代 (1)。在这些推定可采取行动的改变中,15% 的 iCCA 和 < 5% 的 eCCA (2 - 4) 中检测到异柠檬酸脱氢酶 (IDH1/2) 基因突变。 IDH1/2 突变也见于其他癌症,包括低级别胶质瘤 (80%)、急性髓性白血病 (20%) 和中心性软骨肉瘤 (80%) (5, 6)。大多数 IDH1 和 IDH2 点突变分别发生在残基精氨酸 132 (R132) 或 172 (R172)。IDH 是三羧酸循环中催化异柠檬酸脱羧的必需酶
硒43。芳香氨基酸的代谢44。组氨酸和色氨酸的代谢45。赖氨酸,苏氨酸和丙氨酸的代谢46。精氨酸的代谢,肌酸的形成和第47号。跨甲基化和羧化,其机制48。THFA和部分氧化的一碳碎片49。甲基化与THFA 50的参与。甘氨酸和丝氨酸的代谢51。氨基酸降解的概述52。生酮和糖原代谢物53。嘧啶核苷酸的生物合成和降解54。嘌呤核苷酸的生物合成和降解55。卟啉的生物合成56。下摆降解和胆汁颜料的代谢57。黄疸的生化方面58。核酸和染色质的结构59。生物合成和DNA 60的功能。DNA修复和DNA重组61。单个类型RNA的结构和功能62。转录及其法规63。mRNA的形成(hnRNA,剪接,编辑,
分析物1-甲基组织2-氨基二酰二酸2-羟基丁酸3-羟基苯乙酸3-羟基丁酸3-羟基丁酸3-羟基异丁酸3-羟基二丁二酸3-羟基丁酸盐含量3-羟基硝酸盐含量4-吡啶毒酸5-甲基四氢叶酸5-甲基四氢叶酸25-羟基维生素D2 25-羟基维生素D3乙酰氨基苯甲酰氯丁胺乙酸乙酸乙酯 Aspartic acid Asymmetric dimethylarginine Betaine Butyrate Butyrobetaine Butyrylcarnitine C-reactive protein Calprotectin and variants Carboxyethyllysine Carboxymethyllysine Carnitine, total Carnitine Choline Citrate Citrulline Cotinine Creatine Creatinine Cystathionine Cystatin C and variants Decanoylcarnitine Dimethylglycine Dodecanoylcarnitine Erythrocyte folate Flavin mononucleotide Folic acid Formate Fumarate Gamma-tocopherol Glutamic acid Glutamine Glutarylcarnitine Glycine HbA1c Hexadecanoylcarnitine Hexanoylcarnitine Histidine羟基丙二酰苯胺羟基氯苯乙烯氨基苯胺羟基羟基甲基烷烯丙基烯丙基硝基苯胺咪唑丙唑丙酸丙酸咪唑丙酸丙酸3-乙酰胺-3-乙酰醛3-乙酰胺-3-乙酰氨基二氨基氨基二氨酰胺-3-乙酰氨基氨基氨基氨基氨基酸吲哚 - 3-3-3-乙酸酯盐酸盐 - 乙酸硫酸盐 - 乙酸硫酸盐 - 3-3-3-3-3-3-依赖于3-3-抑制剂 - 依赖于3-抑制剂异亮氨酸
丝氨酸/精氨酸富含剪接因子3(SRSF3)是一个重要的多功能剪接因子,在过去三十年中引起了人们的注意。SRSF3的重要性是由所有动物中令人印象深刻的保守蛋白序列和替代外显子4所证明的,这代表了一种自动调节机制,可维持其适当的细胞表达水平。最近一直发现SRSF3的新功能,尤其是其致癌功能。srsf3通过调节许多靶基因的RNA生物发生和加工的几乎所有方面,在许多靶基因的过程中起着至关重要的作用,因此在过表达或无调时会导致肿瘤发生。本综述更新并突出了SRSF3的基因,mRNA和蛋白质结构,SRSF3表达的调节机制以及SRSF3靶标的特征和结合序列,这些序列有助于SRSF3在肿瘤和人类疾病中有助于多样的分子和细胞功能。