六角硼硝酸盐(HBN)在过去十年中一直是众多研究工作的主题。是在HBN中产生光学活性缺陷,因为它们易于整合,例如在范德华(Van der Waals)异质结构及其室温光子发射。在HBN中创建此类缺陷的许多方法仍在研究中。在这项工作中,我们介绍了使用具有不同等离子体物种的远程等离子体在HBN中创建单个缺陷发射器的方法,并从统计上报告了结果。我们使用了氩气,氮和氧等离子体,并报告了由不同气体物种及其光学特性产生的发射器的统计数据。特别是,我们检查了血浆过程前后的去角质片的发射,而无需退火步骤,以避免产生不受血浆暴露引起的发射器。我们的发现表明,纯物理氩等离子体治疗是通过血浆暴露在HBN中创建光学活性缺陷发射器的最有希望的途径。
1。研究P-N二极管的I-V特征。2。找到半导体的霍尔系数的值。3。通过螺旋方法找到电子的E/M值。4。使用四个探针方法找到内在半导体的带隙。5。找到氩气的闪烁和淬火潜力,并找到未知电容器的电容。6。使用光电细胞找到普朗克常数的值。7。通过使用PT电阻温度计,通过邮局来找到电阻的温度系数。8。使用甲拉头管找到氩/汞的电离潜力。9。研究磁场的变化,并通过Stewart和Gee的设备找到线圈半径。10。研究(Cu-Fe,Cu-Constantan)热电偶的特征。11。通过追踪B-H曲线来计算磁滞损失。12。通过压电方法找到超声波的频率。13。验证Richardson热离子方程。14。使用CRO实现半波和全波二极管整流器。
对于这个项目,这些挑战本来可以在各种蚀刻化学中遇到。当前用于等离子蚀刻铝的气体为BC13,SICL4,CC14,CL2,BBR3,HBR和BR2 [1,4]。这些气体都是剧毒或致癌的。四胆碱硅不被认为是致癌物,而是毒性。这是选择SICL4作为该项目的蚀刻气体的主要原因之一。SICL4的另一个优点是,它增加了铝对光抗抗命天的选择性。使用SICL4作为唯一的蚀刻气体时,血浆中的过量电弧可能以相对较低的功率发生(<100瓦)发生,因此需要稀释剂来防止这种弧形。这样的稀释剂不仅可以减少等离子体中的弧菌,而且还提高了光膜天固醇的选择性是氦气[2]。使用SICL4和高功率(300瓦)的SICL4和Argon的混合物来完成氧化铝的突破。氩气,是因为其离子很重,因此在溅射过程中对表面造成了更大的损害。SIC14通过减少血浆气氛中的水分来充当水清除剂,从而防止了氧化铝的进一步生长[1]。
前言 自 1960 年 8 月 CORONA 卫星首次成功飞行以来,情报界的空中侦察计划一直是美国最严密的机密之一。然而,冷战的结束终于使解密 20 世纪 60 年代第一批美国卫星系统的信息和图像成为可能。为此,威廉·克林顿总统于今年 2 月下令在 18 个月内解密 CORONA、ARGON 和 LANYARD 等早期卫星系统的历史情报图像。由于总统的行政命令 1295 1(见附录)设想将这些卫星图像用于科学和环境用途,解密的照片将转移到国家档案馆,副本将寄送美国地质调查局。副总统阿尔伯特·戈尔首先敦促情报界开放其早期图像用于环境研究,他公布了第一张 CORONA
在VACUUM(10-3 PA)和Argon(200 pa)大气层中,在200-550°的温度范围内,在200-550°的温度范围内,在200-550°的温度范围内,通过DC磁铁溅射在SI(100)基板上沉积在Si(100)基板上沉积的Na-Nioscale Ni/Cu/C薄膜的结构和相形的过程。使用同步加速器和COP-辐射X射线衍射(XRD)和次级离子质谱法(SIMS)分析了真空和AR大气中相组合的扩散传质以及相位的变化。由于CU和Ni原子的扩散迁移率随温度升高而导致研究间隔的升高,因此形成了具有不同Ni和Cu浓度的两个区域。晶粒边界和Cu和Ni扩散的大量机制以及热处理气氛的影响。如图所示,与氩气中的nealing相比,在真空气氛中退火会导致基于Cu-基固体溶液形成的发作温度升高100°C,而该固体溶液中Ni浓度的降低。因此,在真空退火时,薄膜在温度范围内保持热稳定性,与氩气退火相比。
研究了工艺气体、激光扫描速度和样品厚度对激光粉末床熔合制备的 Ti-6Al-4V 中残余应力和孔隙率形成的影响。使用纯氩气和氦气以及它们的混合物(30% 氦气)来建立残余氧含量低至 100 ppm O 2 的工艺气氛。结果表明,通过 X 射线衍射测得的薄样品(220 MPa)的亚表面残余应力明显低于长方体样品(645 MPa)。这种差异归因于较短的激光矢量长度,导致热量积聚,从而实现原位应力释放。即使增加了扫描速度,在工艺气体中添加氦气也不会在简单的几何形状中引入额外的亚表面残余应力。最后,在氦气下构建的悬臂(从底板移除后)的偏转比在氩气和氩气-氦气混合物下制备的悬臂的偏转更大。该结果表明,由于氦气的高热导率、热容量和热扩散率,在氦气下制造涉及大面积扫描的复杂设计可能受到更高的残余应力。
Ti-6Al-4V 粉末的一种制造方法是等离子雾化,可实现优异的球形度和较低的残留元素(如氧),但会带来等离子雾化工艺固有的高密度夹杂物风险。某些气体雾化技术(如 EIGA)也可以实现与粉末床增材机器相当的残留元素水平和可接受的形态。EIGA 采用一种不含陶瓷和钨的工艺,可降低高密度夹杂物的风险。PowderRange Ti64 可使用氩气保护气进行加工。
粉末式CCM-MC是一种非磁性的,钴铬合金,具有高强度,耐腐蚀性和耐磨性。该合金是类似于CCM和CCM以及合金的粉末冶金版本,是ASTM F 75铸造合金的高氮,中碳锻造版。通过真空感应熔化(VIM),然后是氮气雾化,产生了粉末气流CCM-MC粉末。它在激光添加剂制造过程中具有出色的焊接性,并且可以使用氮或氩气屏蔽气体进行处理。
氧气燃料燃烧涉及在富含氧气的环境中而不是在空气中燃烧化石燃料或生物量。在空气中燃烧化石燃料(大约78%的氮,21%的氧和1%的氩气)导致烟气气流具有稀释的CO 2浓度,需要更多能源密集型强化后的固定后碳捕获过程才能部署。在氧气燃烧中,烟道气具有高CO 2浓度,这使得随后的碳捕获,运输和存储更加有效。该过程涉及氧气产生,燃料燃烧和CO 2捕获。