摘要 在 EU-SST 研发活动框架内,法国国家太空研究中心和阿丽亚娜集团设计并开发了新的光学监视策略,以便以协调或非协调的方式对低地球轨道、中地球轨道和高地球轨道上的空间物体进行分类。这些活动的第一部分是分析公开文献中的最新技术,并根据从这些论文中找到的元素构建我们自己的解决方案。然后,针对每个轨道区域制定了监视策略,重点是低地球轨道和中地球轨道。两者都有一种协调模式:这意味着这些策略会考虑到站点位置和每个站点可以勘察的天空区域来优化要勘察的天空区域;还为每种策略开发了一种非协调模式,以便评估对性能的影响。针对每种轨道区域已经开发了几种监视模式,本文将对这些模式进行介绍。本文将基于法国国家太空研究中心 BA3E 模拟器和阿丽亚娜集团工具,描述这些策略在由 EU-SST 传感器形成的理论光学网络上的模拟性能。最后,在为期两周的活动期间,使用 GEOTracker® 传感器进行了一项操作实验,以挑战和评估这些策略在操作条件下的性能。
与瑞典接任欧盟总统职位,1月13日,在基鲁纳(Kiruna)的Esrange太空中心开设了新的发射设施就职典礼,参加了I.A.由瑞典国家元首,埃克拉·乌尔苏拉·冯·德莱恩(Ec Ursula von der Leyen)总裁卡尔·十六世·古斯塔夫(King Carl XVI Gustaf)和ESA DG Josef Aschbacher。Esrange是第一个欧洲太空港,可为欧洲土壤中的小卫星发射垂直轨道。自1966年以来,Esrange主持了轨道下发出的火箭和高空气球的发射。现在,可以从Esrange发射小型卫星到Leo的Polar Orbits。此外,新设施可以测试可重复使用的火箭。Arianegroup将对其Themis可重复使用的助推器进行初步测试。此外,ISAR航空航天已经过去了,将继续在Esrange进行微型推出器进行测试。
Justyna是来自波兰Innspace的太空集团的联合创始人和领导者。作为一个团队,他们正在实施与太空工程有关的项目,主要与火星和轨道飞行有关。他们赢得了2019年学生航空航天挑战赛的ESA大奖赛和2020年学生航空航天挑战赛的Arianegroup奖,在美国的火星殖民地奖中获得第五名,在未来的火星生命中获得了两个项目的赢得金奖,并获得了中国的两个项目,并在中国竞争中获得了第一个殖民地比赛,并获得了Actinspace 2020 Hany in the Actinspace 2020 Hany in nernan in nany in nany in nany中。除了Innspace外,Justyna还活跃于其他太空组织。她是波兰在太空生产咨询委员会中的国家联系点,波兰航天局主席的学生会成员和波兰天体生物学协会董事会成员。此外,她还与南亚火星协会有联系,她是咨询>
摘要 航天器自主制导导航与控制 (GNC) 涵盖了全新的 GNC 策略,包括机载健康监测能力、决策算法和用于重新配置的长期策略。其关键特征是设计不太稳健、部件更具适应性和/或学习性的新概念。这一概念在设计阶段的成本将大大降低,并且在发生故障时更安全。 在其研究活动框架内,阿丽亚娜集团多年来一直在研究 GNC 的智能方法。人工智能和机器学习应用的最新进展扩大了 GNC 机会的范围。在本文中,我们专注于开发性能优于使用经典反馈控制技术合成的控制器的增强型控制器。一项技术调查将我们的研究导向通过强化学习技术训练的非线性控制神经网络结构。将这些技术应用于一个简单但具有代表性的发射器上级控制工业研究案例,可以深入了解该方法,并为结合人工智能和自动控制开辟有趣的前景。
Arianegroup目前正在基于通过聚合物电解质膜(PEM)电解仪基于推进剂,氢和氧气的轨道产生的创新半电力推进系统(WPS)。推进系统由应在其操作环境中测试的新技术和组件组成,以验证其在太空中的功能。因此,开发了一个演示器系统概念,该概念应在立方体平台上进行测试。在第一步中对WPS的当前发展进行了检查,然后通过项目分解结构以及演示者水推进系统(DWP)的设计和开发计划对Cubesat任务进行了描述。与此处的结果结合了有关合适的立方体平台的文献研究的结果,从而定义了示威者系统的技术要求。这些技术要求构成了开发DWP概念的基础,该概念通过MATLAB计算对电解仪产生的气体的行为进行了分析。对于示威者推进系统,在最后一步中定义了初步任务。它概述了系统的预期性能,审查轨道并启动可能性并定义了太空中的操作过程。此外,还计算了一个链路预算,该链接预算可在Cubesat的地面站飞越期间传输数据速率。
P. Lionnet Eurospace(代理委员会主席) L. Beugnet 空中客车防务与航天公司 A. Canals CS 集团 P. Dandre 泰雷兹阿莱尼亚宇航法国公司 S. Duncan 泰雷兹阿莱尼亚宇航英国公司 I. Eballard 阿丽亚娜集团 G. Estaves 泰雷兹阿莱尼亚宇航法国公司 D. Felbach OHB Systems AG J. Fuchs ESA/ESTEC R. Gerlich 富特旺根应用技术大学 S. Habinc Cobham Gaisler HJ. Herpel 空中客车防务与航天有限公司 U. Hoch 空中客车防务与航天有限公司 Ch. Honvault ESA/ESTEC U Kulau DSI 航空航天技术有限公司 D. Lagarde 泰雷兹阿莱尼亚宇航法国公司 JB. Lambert CNES Ch. Lemercier 空中客车防务与航天公司 B. Leroy 空中客车防务与航天公司 米拉蒙 CNES 博士 M. 蒙塔尼亚泰利斯阿莱尼亚航天公司 意大利 JL。 Poupat 空客防务与航天 SAS Ch. Steiger ESA/ESOC F. Warfelmann 空中客车防务与航天有限公司 A. Zadeh ESA/ESTEC
● 探索公司于 2021 年成立,旨在开发可重复使用和可再填充的宇宙飞船 Nyx,以满足空间站和太空探索日益增长的后勤需求。 ● Nyx 设计用于从世界上任何重型发射器发射 - 使其成为最实惠且与发射器无关的太空货运飞行器。 ● 由前空客和阿丽亚娜集团太空工程师领导的 TEC 是第一家与 NASA 签署空间法案协议的欧洲公司。波尔多、慕尼黑、休斯顿、都灵,2024 年 11 月 18 日:领先的欧洲太空技术公司探索公司 (TEC) 宣布已在由 Balderton Capital 和 Plural 共同领投的 B 轮融资中筹集了 1.6 亿美元,Bessemer Venture Partners、NGP Capital、French Tech Souveraineté、DeepTech & Climate Fonds (DTCF) 和 Bayern Kapital 参与其中。本轮融资还包括来自历史投资者的大量后续投资,包括 EQT Ventures、Red River West、Cherry Ventures、Promus Ventures 和 Omnes Real Tech Fund。这是两家欧洲主权基金(由 Bpifrance 和 DTCF 管理的 French Tech Souveraineté)首次共同投资,展示了 TEC 的战略欧洲 DNA。这笔资金使 TEC 的总融资额达到近 2.3 亿美元,将用于开发和测试 Nyx、扩大 200 人的团队并扩大产能。TEC 由空客前 Orion-ESM 副总裁 Hélène Huby 以及来自空客和阿丽亚娜集团的经验丰富的团队于 2021 年创立,致力于开发、制造和运营宇宙飞船,以满足空间站和太空探索的后勤需求。TEC 专注于可重复使用和可再填充的航天器,旨在让太空探索变得经济实惠、模块化和可持续。 The Exploration Company 联合创始人兼首席执行官 Hélène Huby 表示:“此次大幅融资不仅体现了 TEC 团队的才华和奉献精神,也表明只有通过促进欧洲国家之间的信任与合作,才能打造具有欧洲根基的全球性公司。我们 98% 的股东都是欧洲人,这表明欧洲大陆可以为大胆的企业家提供资金。太空将在塑造人类未来方面发挥关键作用,我希望为建设一个和平、合作的未来做出贡献,我们的欧洲 DNA 与这一使命完美契合。”“在过去 12 个月中,我们实现了重要的运营和财务里程碑,并与航天机构和商业客户签署了重要的服务合同。这笔新资金是我们实现宏伟目标的下一步,我很高兴欢迎 Plural、Balderton Capital、NGP Capital 和 Bessemer 加入我们的旅程,以及我们之前的投资者。他们的支持和雄心壮志对于我们向 Nyx Earth 发射又迈出了重要一步,并打造欧洲太空领导者至关重要。”
o 使用时间触发以太网技术连接发射器中的所有子系统,以取代过去的 MIL-1553 总线。 o 使安全关键制导、导航和控制数据与非关键监控或视频数据在同一网络上实现——在同一物理介质上,减少线束。 • 基于冗余 TTEthernet ® 的数据网络降低了软件复杂性,实现了更快的集成并降低了客户的项目风险。 奥地利维也纳,2022 年 9 月 6 日:欧洲新的旗舰运载火箭阿丽亚娜 6 将确保欧洲航天部门能够独立进入太空。 TTTech Aerospace 为阿丽亚娜 6 号航空电子骨干系统的创建做出了重大贡献。其 ASIC(“芯片”)和相关软件集成到 50 多个子系统中,处理计算、配电或推力矢量驱动等功能,所有这些都连接到单个冗余的 TTEthernet ® 网络,即发射器的“神经系统”。抗辐射 TTEthernet ® 控制器芯片和相关嵌入式软件的开发和鉴定始于一项由法国航天局 (CNES) 和欧洲航天局 (ESA) 通过其未来发射器准备计划 (FLPP) 共同资助的研究活动。TTTech Aerospace 开发、制造并鉴定了这种抗辐射 ASIC,具有 HiRel 和航天质量,阿丽亚娜 6 号是其首批用户之一。“我们为与阿丽亚娜集团合作而感到自豪,并通过我们的第二代 TTEthernet ® 产品为欧洲的阿丽亚娜 6 号发射器做出贡献,使这款高度先进的航天器能够可靠地运行。TTE 交换机和 TTE 终端系统控制器 HiRel ASIC 的开发和鉴定完成,作为连接数据网络中所有安全关键单元的航空电子设备的核心,是一个重要的里程碑。我们还为阿丽亚娜 6 号提供了固件开发和认证以及集成支持,我们对最终的认证步骤和即将到来的首次发射感到非常兴奋,”TTTech 航空航天业务部高级副总裁 Christian Fidi 解释道。前几代大型运载火箭主要使用强大的 MIL-1553 总线来处理安全关键的指挥和控制数据。然而,为了满足模块化航空电子设备和更高数据吞吐量的需求,阿丽亚娜 6 号的开发人员选择了一种数据网络,它可以提供大约十倍的带宽和至少相同的可靠性水平,而不会增加成本和复杂性。研究发现,基于 TTEthernet ® 的架构非常适合并能满足这些规范。TTEthernet ® 得益于模块化、可扩展的系统架构,可以节省成本。安全可靠的数据分区、高达 1 Gbit/s 的带宽和精确的时间分布确保了三种流量类别(尽力而为、在同一网络上传输关键控制和命令数据(速率受限和时间触发以太网)以及非关键有效载荷数据。这减少了布线以及系统复杂性、集成和测试工作量。容错、自动时间同步和故障遏制在硬件中实现,这提高了安全性并确保系统始终正常运行。ArianeGroup 首席执行官 Andre Hubert Roussel 解释了 TTEthernet ® 和 TTTech Aerospace 产品对该项目的好处:“对于 Ariane 6,我们需要一个能够处理当前和未来需求的航空电子主干系统,尤其是更高的带宽,以集成额外的
2023年5月,HYDIS联盟联合来自14个欧洲国家的19个合作伙伴和20多个分包商,在2023年欧洲防务基金框架内提交了一项用于对抗新兴高度复杂威胁的大气层内拦截器的架构和技术成熟度概念研究。2023年7月12日,欧盟委员会宣布已选定该项目并给予资助。该联盟由欧洲导弹集团 (MBDA) 协调,提出了 HYDIS²(高超音速防御拦截器研究)项目,该项目汇集了国防团体、机构、中小企业、中型企业和大学。该联盟汇集了整个欧盟最优秀的导弹专家。法国、德国、意大利和荷兰已签署意向书并就初步共同要求达成一致,确认了他们的支持和参与。 HYDIS 2 的目标是研究不同的拦截器概念并完善相关关键技术,以便提供最佳的反高超音速和反弹道拦截解决方案,满足四个成员国(法国、意大利、德国和荷兰)的需求,同时考虑到欧洲 TWISTER 能力计划。该项目是欧洲国家为保卫民众和武装部队的使命做出贡献的核心要素,特别是针对与弹道威胁相比具有根本性变化的新兴高超音速威胁。 HYDIS² 联盟汇集了来自 14 个国家的 19 个合作伙伴和 20 多个分包商。合作伙伴包括阿丽亚娜集团 (ArianeGroup)、AVIO、Avio Aero、Bayern-Chemie、CIRA、DLR、GKN Fokker、LYNRED、MBDA España、MBDA France、MBDA Germany、MBDA Italia、OHB System AG、ONERA、ROXEL France、THALES LAS France、TDW、THALES Dutch 和 TNO。 HYDIS² 参与了 AQUILA 项目,该项目为多个欧洲国家提出了反高超音速拦截器概念,同时还与其他 MBDA 防空产品一起开发了全球区域防御产品组合。
摘要 ArianeWorks 是由法国国家空间研究中心和阿丽亚娜集团发起的创新平台,它加速了 Themis 的开发,Themis 是一种由液氧和生物甲烷推动的低成本可重复使用的火箭级演示器,为 2030 年的欧洲发射系列铺平了道路。根据其股东的生态设计愿景,ArianeWorks 在 Themis 计划中启动了生态设计战略的实施。在此背景下,本研究介绍了基于半可重复使用发射器的发射服务的生命周期评估,该发射器源自 Themis 并在圭亚那航天中心运行,该评估发生在 Themis 的早期设计阶段。该分析意味着开发一个特定的框架来解释下级的可重复使用性,需要使用经过调整的功能单元、在生命周期中引入新的阶段以及特定的参数化来描述其复杂性。本文接着进行了敏感性分析,以确定影响的主要驱动因素并支持设计权衡分析,然后估计最大可信缓解潜力。然后,概述了一种评估可重复使用性可能带来的环境效益的方法,并为所研究的发射服务提供了初步结果。影响评估结果证实,结构和推进剂的生产对阿丽亚娜火箭的生命周期影响最大。由于延长寿命阶段会产生额外影响,因此低级火箭的回收和翻新也发挥着重要作用,但也使一些影响减少成为可能,这些影响可以通过明确的惯例来隔离。跨大西洋运输阶段或测试和加油期间的推进剂消耗会造成不可忽略的影响,这些影响可以通过采用节俭的方法或技术创新来减轻。总体而言,该研究强调,与基线相比,对气候变化和资源枯竭的总影响可能减少约 30-80%。然而,尽管人们普遍认为可重复使用性可以减少生命周期影响,但研究表明,实际情况要复杂得多,因为从发射器的环境性能比较中得出的结论取决于惯例、市场参数、运营方案和环境影响类别。对于所研究的发射服务,结果表明,虽然可重复使用性可能会减少对资源枯竭的影响,但它可能会增加对气候变化的影响。此外,可重复使用性的任何环境效益都可能被这项技术所促进的全球太空活动的增长完全抵消,从而导致适得其反的反弹效应。本研究强调,由于采用生态设计方法,影响可能会减少,这将减轻这种影响。关键词:环境影响、生命周期评估、生态设计、发射器、可重复使用性、方法论 首字母缩略词/缩写