c-0038基于人IPSC Pedro GarridoRodríguez的肝脏发育的纳米转录瘤和表观症状瘤;玛丽亚·拉马斯·洛佩斯(MaríaLlamasLópez);玛丽亚·尤金尼亚·杜加特(MaríaEugeniaChollet Dugarte);何塞·帕迪拉·鲁伊斯(JoséPadillaRuiz); Esther Navarro Manzano; Rosa Cifuentes Riquelme; JuanJoséRojoCarrillo; Vicente Vicente;玛丽亚·路易莎·洛扎诺(MaríaLuisaLozano);肖恩·哈里森(Sean Harrison);加雷斯·塞维尔哈维尔·科拉尔(Javier Corral); Gerben Menschaert;伯利恒莫雷娜·巴里奥(Morena Barrio); C-0039在大量儿科种群HelenaRodríguezGonzález中建立了Brabpostinal Homovanillic和5-羟基内丁二酸的连续参考间隔; Aida Ormazabal;梅赛德斯·卡萨多(Mercedes Casado); Angela Y. Arias;克拉拉·奥利瓦(Clara Oliva);玛丽亚·巴兰科·阿尔特里巴(Maria Barranco-Altirriba);里卡德·卡萨德瓦尔(Ricard Casadevall); francescgarcía-cuyas; AndrésNascimento;卡洛斯·奥尔特斯(Carlos Ortez); Daniel Natera-De-Benito; ThaisArmangé;玛丽亚·奥卡拉汉(Maria M. O'Callaghan); NataliaJuliá-Palacios;亚历杭德拉达令; JuanDaríoOrtigoza-escobar;卡姆·福斯(Carme Fons);天使加西亚 - 佐拉拉; Alexandre Perera-llluna;拉斐尔·阿尔图奇(Rafael Artuch); C-0040通过系统生物学的生物技术和生态兴趣的宏基因组功能酶变体的检测JacobGonzálezIsaGonzálezIsa;卡洛斯·佩雷斯(CarlosPérez)Cantalapiedra; Jordi Burguet Castell; Jaime Huerta菌株; div>
值班/值班分配 签到 签退 AM FDO BEAL, MIRANDA K, LT 0600 1430 PM FDO LABAT, BLAKE C, LT# 1430 2300 CDO LABAT, BLAKE C, LT# 2300 2359 AM AFDO BRITE, SAMANTHA N, ENS 0600 1430 PM AFDO JOHNSTONE, NATHAN A, ENS 1430 2300 AM 值班司机 ARMEL, RYAN K, 1stLt 0700 1500 PM 值班司机 BARRINGER, ASA E, ENS 1400 2200 RDO AM HOMEFIELD POPP, MIKE S, LT# 0645 1300 RDO PM HOMEFIELD POPP, MIKE S, LT# 1300 1800 RDO AM 布鲁顿罗德里格斯,里卡多 L,LT# 0800 1230 RDO PM 布鲁顿罗德里格斯,里卡多 L,LT# 1230 1730 上午 主场 WW 海涅,威廉 J,第一中尉 0630 1200 中场 WW AUNE, ARIAS J, ENS 1200 1700 PM HOMEFIELD WW MONTOYA, MATEO C, 1stLt 1700 2300 AM 布鲁顿 WW STUTTS, MARK K, ENS# 0800 1230 PM 布鲁顿 WW STUTTS, MARK K, ENS# 1230 1730 SDO WEG,安托恩 C,ENS 0745 2359 QA McVEY, JOSHUA W, LT# 1200 1700 安全 QA WU, TIMOTHY C, LT 1300 1400
本清单第三版是在“投资便利化促进发展”项目框架下编写的,该项目由国际贸易中心 (ITC) 的 Quan Zhao 和 Rajesh Aggarwal 负责,德国发展研究所/德国发展政策研究所 (DIE) 的 Axel Berger 负责。本清单以 Khalil Hamdani 的初稿为基础,由 Karl P. Sauvant、Matthew Stephenson 和 Yardenne Kagan 组成的团队进一步完善。本清单第三版根据额外研究以及该项目框架内举办的各种活动参与者的评论进行了大幅扩充(有关这些活动的报告,请参阅 https://www.intracen.org/itc/Investment-Facilitation-for-Development/ )。还收到了来自各国际组织的反馈。此外,本报告还得到了 ITC-DIE/世界经济论坛投资促进发展框架评论小组成员的反馈,该小组主要由投资促进机构、外国直接投资服务提供者和国际投资者的代表组成。世界银行集团提供了有益的文本输入,Makane Moïse Mbengue、Jan Knoerich、Heather Taylor-Strauss、José Henrique Vieira Martins 和阿根廷商业和服务委员会协调的阿根廷意见也提供了有益的文本输入。特别感谢 Alexandre de Crombrugghe、Maximilian Eltgen、Jaime Granados、Andreas Hora、Mia Mikic、Ivan Nimac、Ana Novik、Ahmed Omic、Sebastian Reil、Bostjan Skalar、Ana Arias Urones 和 Douglas Van Den Berghe 提供的非常有益的评论。
Yogesh Sontakke博士;人类胚胎学教科书,临床病例和3D插图; CBS Publishers&Distributors Pvt Ltd,新德里。Ghimire S,Mantziou V,Moris N,Martinez Arias A.人类胃结构:胚胎及其模型。Dev Biol。 (2021)474:100–8。 doi:10.1016/j。 ydbio.2021.01.006。 Luckett WP。 蛋黄囊的起源和分化,以及前象中胚层和恒河猴猴子胚胎中的中胚层。 am j anat。 (1978)152(1):59–97。 doi: 10.1002/aja.1001520106 Pechriggl E, Blumer M, Tubbs RS, Olewnik Ł, Konschake M, Fortélny R, Stofferin H, Honis HR, Quinones S, Maranillo E and Sanudo J (2022) Embryology of the Abdominal Wall and Associated Malformations— A Review. 正面。 外科。 9:891896。 doi:10.3389/fsurg.2022.891896。 Zahouani T,Mendez MD。 圆环。 statpearls。 宝藏岛(FL)(2021)。 Karaman A,Aydin H,Goksu K.与三体术相关的同时的圆环,Ancephaly和关节炎。 基因群岛。 (2015)26(1):77–9。 PMID:26043511。 Chuaire Noack L.了解胃刺的新线索。 胚胎学,发病机理和流行病学。 colomb Med(Cali)。 (2021)52(3):E4004227。 doi:10.25100/cm.v52i3.4227。 Keshtgar A,Griffiths M.儿童脐疝的监禁:趋势是否在增加? 欧洲小儿手术杂志。 (2003)13(01):40–3。DOI:10.1055/S-2003-38299。Dev Biol。(2021)474:100–8。doi:10.1016/j。ydbio.2021.01.006。Luckett WP。蛋黄囊的起源和分化,以及前象中胚层和恒河猴猴子胚胎中的中胚层。am j anat。(1978)152(1):59–97。doi: 10.1002/aja.1001520106 Pechriggl E, Blumer M, Tubbs RS, Olewnik Ł, Konschake M, Fortélny R, Stofferin H, Honis HR, Quinones S, Maranillo E and Sanudo J (2022) Embryology of the Abdominal Wall and Associated Malformations— A Review.正面。外科。 9:891896。 doi:10.3389/fsurg.2022.891896。 Zahouani T,Mendez MD。 圆环。 statpearls。 宝藏岛(FL)(2021)。 Karaman A,Aydin H,Goksu K.与三体术相关的同时的圆环,Ancephaly和关节炎。 基因群岛。 (2015)26(1):77–9。 PMID:26043511。 Chuaire Noack L.了解胃刺的新线索。 胚胎学,发病机理和流行病学。 colomb Med(Cali)。 (2021)52(3):E4004227。 doi:10.25100/cm.v52i3.4227。 Keshtgar A,Griffiths M.儿童脐疝的监禁:趋势是否在增加? 欧洲小儿手术杂志。 (2003)13(01):40–3。DOI:10.1055/S-2003-38299。外科。9:891896。 doi:10.3389/fsurg.2022.891896。Zahouani T,Mendez MD。圆环。statpearls。宝藏岛(FL)(2021)。Karaman A,Aydin H,Goksu K.与三体术相关的同时的圆环,Ancephaly和关节炎。 基因群岛。 (2015)26(1):77–9。 PMID:26043511。 Chuaire Noack L.了解胃刺的新线索。 胚胎学,发病机理和流行病学。 colomb Med(Cali)。 (2021)52(3):E4004227。 doi:10.25100/cm.v52i3.4227。 Keshtgar A,Griffiths M.儿童脐疝的监禁:趋势是否在增加? 欧洲小儿手术杂志。 (2003)13(01):40–3。DOI:10.1055/S-2003-38299。Karaman A,Aydin H,Goksu K.与三体术相关的同时的圆环,Ancephaly和关节炎。基因群岛。(2015)26(1):77–9。PMID:26043511。Chuaire Noack L.了解胃刺的新线索。胚胎学,发病机理和流行病学。colomb Med(Cali)。(2021)52(3):E4004227。doi:10.25100/cm.v52i3.4227。Keshtgar A,Griffiths M.儿童脐疝的监禁:趋势是否在增加?欧洲小儿手术杂志。(2003)13(01):40–3。DOI:10.1055/S-2003-38299。(2003)13(01):40–3。DOI:10.1055/S-2003-38299。
这项工作是与 Airbus Helicopters Deutschland GmbH (AHD) 和 Instituto Superior de Engenharia de Lisboa (ISEL) 合作编写的,作为最终大师的工作,包括开发直升机的登机梯。这是中小型直升机外部设备开发初始阶段的一种方法,着眼于未来的航空认证。开发过程会经历头脑风暴和建模等多个阶段,直到获得具有吸引力和功能特性的模型。获得模型后,开发了一个额外的步骤来方便行动不便的用户登机。随后,根据行业规范,对组件进行了静态研究和结构尺寸标注。在这项工作结束时,开发了一个登机台阶,其中包括一个额外的可扩展台阶。提出了三种可行的模型,两种为金属合金,一种为复合材料,作为公司未来发展的基础。
气候变化正在全球发生,并在整个地球上产生了许多影响(Arias等人2021)。为了进行气候变化影响评估,并为特定地区设计有效的响应策略,为该地区产生未来的气候预测是先决条件。在全球范围内的气候预测通常基于耦合模型对比项目(CMIP)下的全球气候模型(GCM)的产出。CMIP第6阶段的模型结果(CMIP6)(Eyring等人2016)对最近的第六次评估报告(AR6)显着贡献了气候变化小组(IPCC)(IPCC 2021)。虽然CMIP6 GCM在代表世界各地的历史气候方面表现出足够的表现(例如Seneviratne&Hauser 2020; Srivastava等。2020; Xin等。2020; Hong等。2021),它们仍然表现出由不同来源引起的系统和区域特异性偏见。例如,CMIP6模型中的偏见可以归因于其海面温度的表示(Wang等人2021; Tong等。2022; Rajendran等。2022),大气循环(Richter&Tokinaga 2020; Wang等人2021),陆地大气相互作用(Abdelmoaty等人2021; Li等。2021),云过程(Cesana&del Genio 2021; Wang等人2021)和其他因素。此外,在一个区域中表现良好的模型可能不一定在另一个区域表现良好。2022)。因此,最初已经进行了针对特定区域的单个CMIP6模型的性能进行排名的研究(Papalexiou等人。2020; Anil等。2021; Desmet&NGO-DUC 2022; Gebresellase等。值得注意的是,以下称为DN22的Desmet&Ngo-Duc(2022)已开发出一种新颖的方法来对CMIP6模型进行对东南亚的模型。越南是受气候变化和海平面上升的强烈影响的国家之一(Dasgupta等人2007;自然资源与环境部2020)。 近年来已经对越南气候变化进行了各种研究。 使用统计学(2007;自然资源与环境部2020)。近年来已经对越南气候变化进行了各种研究。使用统计学(
1. 艾伯塔省卫生部,《卫生系统问责与绩效》。2015 年。2015-16 年流感免疫政策 (IIP)。2. 艾伯塔省卫生部,《卫生系统问责与绩效》。2015 年。艾伯塔省疫苗冷链政策(2015 年 3 月)。3. 艾伯塔省卫生与保健局。2011 年。一次性医疗器械标准:适用于关键和半关键医疗器械。4. 艾伯塔省卫生服务局。2013 年。细胞毒药物手册、给药和处理指南(第三版)。5. 疾病控制和预防中心,国家新发和人畜共患传染病中心。2015 年。门诊感染预防检查表:安全护理的最低期望。6. 疾病控制和预防中心,国家免疫和呼吸道疾病中心。2014 年。疫苗储存和处理工具包。 7. Dolan SA、Felizardo G、Barnes S、Kraska S、Patrick M、Bumsted A、Arias KM。2016 年。APIC 立场文件:医疗保健中的安全注射、输液和药瓶操作。8. 艾伯塔省政府。2009 年。职业健康与安全法规。9. 国家药房监管机构协会(NAPRA)。2015 年。药房配制无害无菌制剂的示范标准。10. 国家职业安全与健康研究所、疾病控制与预防中心。2014 年。医疗环境中的抗肿瘤药物和其他危险药物清单。11. 安大略省健康保护与促进局(安大略省公共卫生局)、省传染病咨询委员会。2015 年。临床诊疗实践的感染预防与控制。多伦多,安大略省:安大略省女王印刷厂。 12. 加拿大公共卫生署。2015 年。2015 年国家免疫接种提供者疫苗储存和处理指南。13. 美国药典。2015 年。USP-NF 通则 <797> 药物配制 – 无菌制剂。
众所周知,气温升高会对经济增长产生负面影响,尤其是在贫穷国家。政府间气候变化专门委员会 (IPCC) 在其上一份报告中强调了气候变化的另一个重要方面:气候条件的波动随着时间的推移而变得更大,气温和降水的空前波动影响着越来越多的地理区域(Arias 等人,2021 年)。本文表明,从经济角度来看,这种现象与气温水平的根本变化同样重要。我们使用 1960 年代以来 133 个国家的气候数据来估计具有随机波动性的面板 VAR。该模型捕捉了气温与经济活动之间的内生相互作用,并适应了可能影响基础序列水平和变异性的冲击。这一框架使我们能够估算无法使用历史数据预测的年气温残余变化的波动性,量化特定国家/地区在特定时点面临的事前“气温风险”。结合适当的识别限制,它还使我们能够隔离气温波动的外生变化,并追踪其对各种经济活动指标的影响。我们的分析得出两个主要结果。第一个结果是,气温波动性随着时间的推移稳步增加,即使在仅受全球变暖影响较小的地区也是如此。第二个结果是,气温波动对经济活动很重要。控制气温水平,波动性每增加1 ℃,GDP增长平均会下降0.3%,GDP增长率波动性增加0.7%。换句话说,气温波动会同时导致收入增长降低和变化无常。波动性冲击也会影响富裕的非农业国家,而且这些国家并不受 GDP、气温或降水量大幅波动的影响。我们发现,波动性既影响消费也影响投资,而且其对制造业和服务业的影响更大。我们的研究结果表明,风险在气候与经济之间的关系中发挥着重要作用。经济主体会对预期环境变异的变化作出反应,与其他宏观金融环境一样,可预测性降低本身不利于增长。这表明,气候风险对福利具有重要的事前影响,气候系统未来路径的不确定性可能会提前影响经济,并且
本专业版块的宗旨是为读者提供最高质量的文章,这些文章涉及细菌致病机制和毒力、感染免疫力和疫苗等相互关联的主题。我们的精神在本版块开头的专业大挑战概述中得到了简洁的表达( Christodoulides,2022 年)。研究主题包括来自编辑委员会成员的广泛文章,重点关注导致人类疾病的重要革兰氏阳性和革兰氏阴性细菌病原体,即嗜肺军团菌、假鼻疽伯克霍尔德菌、葡萄球菌属、鼠疫耶尔森菌、铜绿假单胞菌和淋病奈瑟菌。铜绿假单胞菌是一种代谢灵活的革兰氏阴性菌,是引起院内感染的主要机会性病原体(Dolan,2020),由于全球卡巴培南类抗生素耐药性增加,世界卫生组织将其列为开发和引进新抗菌药物和疫苗的“高优先级”菌(World Health Orgainisation,2024)。铜绿假单胞菌是一种强大的细菌,可表达多种毒力因子、类型分泌系统、群体感应途径和胞外多糖,以及核心耐药机制,如药物渗透屏障、染色体编码的 AmpC 酶和六个多药流出泵超家族(Miller and Arias,2024)。流出泵在铜绿假单胞菌感染的发病机制以及对治疗和清除的抵抗中起着重要作用。在他们的小型评论中,Fernandes 和 Jorth 讨论了铜绿假单胞菌流出泵在毒力调节中具有争议和对立的作用。流出泵的主要功能是从细菌细胞中排出抗生素,尽管有证据表明这些泵可能具有影响铜绿假单胞菌毒力的其他功能。流出泵是公认的治疗干预目标(Fernandes 和 Jorth),也是疫苗开发的潜在抗原(Silva 等人,2024 年)。作者得出结论,在抗生素耐药性和细菌致病机制的背景下,针对流出泵可能会产生意想不到的后果,在开发治疗方法时必须考虑到这些后果。疫苗研究的代表论文是关于革兰氏阴性菌鼠疫耶尔森菌和淋病奈瑟菌。鼠疫耶尔森菌是一种自有记载以来就一直困扰着人类的细菌。它对公众健康构成重大风险,并且可能
Adamson, PT、Rutherfurd, ID、Peel, MC、Conlan, IA,2009 年。湄公河的水文学。引自:Cambell, I.(编辑),湄公河:国际河流流域的生物物理环境,第一版。Elsevier,第 53 – 76 页。Alcayaga, H.、Belleudy, P.、Jourdain, C.,2012 年。流域尺度上水电结构对河流扰动的形态学建模。引自:Mu ˜ noz, RM(编辑),河流流量 2012。河流水力学国际会议,第 537 – 544 页。 Arias, ME、Cochrane, TA、Kummu, M.、Lauri, H.、Holtgrieve, GW、Koponen, J.、Piman, T.,2014。水电和气候变化对东南亚最重要湿地生态生产力驱动因素的影响。生态模型 272,252 – 263。Ashouri, H.、Hsu, K.、Sorooshian, S.、Braithwaite, DK、Knapp, KR、Cecil, LD、Nelson, BR、Prat, OP,2015。PERSIANN-CDR:来自多卫星观测的每日降水气候数据记录,用于水文和气候研究。美国流星学会通报 96(1),69 – 83。 Ayugi, B., Tan, G., Gnitou, GT, Ojara, M., Ongoma, V., 2020. 罗斯贝中心区域气候模型对东非降水的历史评估和模拟。大气研究 232, 104705 。Bao, Z., Zhang, J., Wang, G., Fu, G., He, R., Yan, X., Jin, J., Liu, Y., Zhang, A., 2012. 中国北方海河流域径流量减少的归因:气候变化还是人类活动?水文地质学杂志 460 – 461, 117 – 129 。Bartkes, M., Brunner, G., Fleming, M., Faber, B., Slaughter, J., 2016. HEC-SSP 统计软件包用户手册 2.1 版。美国陆军工程兵团。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2018a。澜沧江梯级大坝对越南湄公河三角洲流态的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (4), 487 – 492。Binh, DV、Kantoush, S.、Mai, NP、Sumi, T.,2018b。越南湄公河三角洲在增加管制流量和河流退化的情况下的水位变化。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 871 – 876。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2019。湄公河流域的长期排放、水位、盐度浓度和降水。 Mendeley Data V3 。Binh, DV、Kantoush, S.、Sumi, T.,2020. 上游水坝导致越南湄公河三角洲长期排放和沉积物负荷的变化。地貌学 353,107011。Cook, BI、Bell, AR、Anchukaitis, KJ、Buckley, BM,2012。积雪和降水对湄公河下游流域旱季径流的影响。地球物理研究杂志 117,D16116。Dang, TD、Cochrane, TA、Arias, ME、Van, PDT、Vries, TTD,2016。湄公河洪泛区水利基础设施建设带来的水文变化。水文过程 30,3824 – 3838。 Darby, SE、Hackney, CR、Leyland, J.、Kummu, M.、Lauri, H.、Parsons, DR、Best, JL、Nicholas, AP、Aalto, R.,2016 年。热带气旋活动变化导致巨型三角洲河流沉积物供应减少。《自然》276 – 279。Eslami, S.,Hoekstra, P., Trung, NN, Kantoush, SA, Binh, DV, Dung, DD, Quang, TT, Vegt, MVD,2019。人为沉积物匮乏导致湄公河三角洲的潮汐放大和盐入侵。Sci. Rep. 9,18746。Fan, H., He, D., Wang, H.,2015。筑坝澜沧江-湄公河主流的环境后果:综述。Earth-Sci. Rev. 146,77 – 91。Ha, TP, Dieperink, C., Tri, VPD, Otter, HS, Hoekstra, P.,2018a。越南湄公河三角洲适应性淡水管理的治理条件。J. Hydrol. 557,116 – 127。 Ha, DT、Ouillon, S.、Vinh, GV,2018b。根据高频测量(2009 – 2016 年)得出的湄公河下游水和悬浮沉积物预算。水 10, 846 。Harris, I.、Osborn, TJ、Jones, P.、Lister, D.,2020。CRU TS 月度高分辨率网格化多元气候数据集第 4 版。科学数据。https://doi.org/10.1038/s41597-020-0453-3)。Hecht, JS、Lacombe, G.、Arias, ME、Dang, TD,2019。湄公河流域的水电大坝:其水文影响回顾。水文杂志 568, 285 – 300 。 Hoang, L.、Ngoc, TA、Maskey, S.,2016。一种用于估算越南湄公河三角洲 CERES-rice 模型参数的稳健参数方法。大田作物研究。196,98 – 111。Hoanh, CT、Jirayoot, K.、Lacomne, G.、Srunetr, V.,2010。气候变化和发展对湄公河流量制度的影响:首次评估 – 2009 年。MRC 技术论文第 29 号。湄公河委员会,老挝万象。Jordan, C.、Tiede, J.、Lojek, O.、Visscher, J.、Apel, H.、Nguyen, HQ、Quang, CNX、Schlurmann, T.,2019。重新审视湄公河三角洲的采砂 – 目前当地沉积物短缺的规模。 Rep. 9,17823 。 Kantoush, S.、Binh, DV、Sumi, T.、Trung, LV,2017。上游水电站大坝和气候变化对越南湄公河三角洲水动力学的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 73 (4),109 – 114 。Kendall, AMG,1938。一种新的秩相关性测量方法。Oxford J. 30,81 – 93 。Kiem, AS、Ishidaira, H.、Hapuarachchi, DP、Zhou, MC、Hirabayahi, Y.、Takeuchi, K.,2008。使用高分辨率日本气象局 (JMA) AGCM 模拟湄公河流域未来水文气候学。水文过程。22,1382 – 1394 。 Kingston, DG、Thompson, JR、Kite, G.,2010。湄公河流域气候变化预测排放量的不确定性。水文地球系统科学讨论。7,5991 – 6024。Kondolf, GM、Rubin, ZK、Minear, JT,2014。湄公河上的水坝:累积沉积物匮乏。水资源研究。50,5158 – 5169。 Kondolf, GM, Schmitt, RJP, Carling, P., Darby, S., Arias, M., Bizzi, S., Castelletti, A., Cochrane, TA, Gibson, S., Kummu, M., Oeurng, C., Rubin, Z., Wild, T., 2018. 湄公河沉积物预算的变化:大型河流流域的累积威胁和管理策略。环境科学总论 625, 114 – 134 。Kummu, M., Lu, XX, Wang, JJ, Varis, O., 2010.湄公河沿岸新兴水库的全流域泥沙截留效率。地貌学 119,181 – 197 。 Lauri, H.,De Moel, H.,Ward, PJ,R ¨ as ¨ anen, TA,Keskinen, M.,Kummu, M.,2012。湄公河水文未来变化:气候变化和水库运行对流量的影响。水文地球系统科学 16,4603 – 4619 。 Li, D.,Long, D.,Zhao, J.,Lu, H.,Hong, Y.,2017。湄公河流域观测到的流动状态变化。水文杂志 551,217 – 232 。 Lu, XX,Siew, RY,2006。过去几十年来湄公河下游的水流量和泥沙通量变化:中国大坝的可能影响。 Hydrol. Earth Syst. Sci. 10, 181 – 195 。 Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流变化观测结果:中国水坝的影响? Quat. Int. 336, 145 – 157 。 Mai, NP, Kantoush, S., Sumi, T., Thang, TD, Trung, LV, Binh, DV, 2018. 评估和适应水坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378 。 Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。