Armin Kuhr 3 Tran Huu Tien 4 Nguyen Quang Dao 5抽象背景:传统的犯罪学理论通常强调犯罪行为中的社会和环境因素。然而,随着遗传学和神经影像技术的进步,早期的生物学研究最初是还原性的,并专注于物理特征,它已经显着发展。这种进化使人们对生物因素在犯罪行为中的作用有了更细微的了解。目的:本综述旨在批判性地研究遗传,神经生物学和心理生理因素如何促进犯罪行为,并探索这些生物学倾向与环境影响之间的相互作用。方法:我们系统地分析了经验研究,这些研究研究了大脑结构,神经递质系统中异常的影响,以及对反社会行为的遗传倾向,将这些发现与社会环境条件相结合。结果:最近的研究结果表明,在脑额叶皮层和杏仁核等大脑区域中异常的显着贡献,以及神经递质系统对反社会行为的失调。这些生物学因素与环境影响相结合,增强了我们对犯罪倾向的理解。结论:将生物学观点融入犯罪学理论中,标志着在研究犯罪行为的研究中,朝着更全面的方法进行了重大转变。正在进行的跨学科研究和协作对于继续促进我们对犯罪行为的理解和管理至关重要。本综述提倡制定有针对性的干预策略和道德政策制定,强调生物学研究的潜力提高刑事司法系统的疗效和人性。关键词:生物犯罪学,犯罪行为的神经生物学,遗传易感性,心理生理因素,多学科方法。
13106-10 • 生成自由电子和波导光子的相关对,Jan-Wilke Henke、Armin Feist、马克斯普朗克多学科科学研究所(德国)、IV. Physikalisches Institut、Georg-August-Univ。哥廷根(德国);黄冠豪,洛桑联邦理工学院物理研究所(瑞士),中心。洛桑联邦理工学院(瑞士)量子科学与工程系; Germaine Arend,马克斯普朗克多学科科学研究所(德国),IV. 物理研究所,乔治奥古斯特大学。哥廷根(德国); Yujia Yang、Arslan S. Raja、洛桑联邦理工学院物理研究所(瑞士)、中心。洛桑联邦理工学院(瑞士)量子科学与工程系; F. Jasmin Kappert,马克斯普朗克多学科科学研究所(德国),IV. 物理研究所,乔治奥古斯特大学。哥廷根(德国);潘嘉禾,洛桑联邦理工学院物理研究所(瑞士),中心。洛桑联邦理工学院(瑞士)量子科学与工程系; Hugo Lourenco-Martins,马克斯普朗克多学科科学研究所(德国),IV. 物理研究所,Georg-August-Univ.哥廷根(德国); Zheru Qiu、Junqiu Liu,洛桑联邦理工学院物理研究所(瑞士),中心。洛桑联邦理工学院(瑞士)量子科学与工程系; Ofer Kfir,马克斯普朗克多学科科学研究所(德国),IV. 物理研究所,乔治奥古斯特大学。哥廷根(德国); Tobias J. Kippenberg,洛桑联邦理工学院(瑞士)物理研究所,中心。洛桑联邦理工学院(瑞士)量子科学与工程系;克劳斯·罗珀斯,马克斯·普朗克多学科科学研究所(德国),乔治·奥古斯特大学物理研究所。哥廷根(德国)
信息和通信技术的发展对个人和整个社会都产生了重大影响。数字化改变了我们单独行动和在社会环境中互动的方式。个人权利和社会凝聚力面临新的挑战,新技术也可以用来克服这些挑战。法律作为确保权利、分配义务和提供稳定社会的工具,必须随着技术的变化而变化。这适用于国家法,更适用于国际法。数字化发展如何改变国际公法是本书的关键主题。促成本书出版的项目——以及在 ZaöRV/Heidelberg 国际法杂志上专门讨论“国际法与互联网”的平行特刊 3/2021——是在全球大流行期间构思、开发和实施的,这场大流行极大地扰乱了日常生活、研究计划,最重要的是,扰乱了生活。我们非常感谢那些帮助我们度过这个充满挑战的时期并将这艘船驶入港口的人。Anna Sophia Tiedeke 提供了早期支持。Elisabeth Alexander、Sarah Gebel、Carolin Eschenfelder、Thomas Lenfers、Leon Seidl、Marieke Simons 和 Grace Ubaruta 在过去几个月中提供了宝贵的编辑支持。Andrea Hug、Verena Schaller-Soltau 和 Angelika Schmidt 提供了技术和编辑协助。海德堡马克斯·普朗克比较公法和国际法研究所 (MPIL) 及其主任 Anne Peters 教授和 Armin von Bogdandy 教授从项目的早期阶段到本书出版,一直支持该项目的实现。最重要的是,我们要感谢我们周围的所有人——太多了,无法一一列举——他们或多或少都心甘情愿地与我们分享了这个项目。Angelo Jr Golia、Matthias C. Kettemann、Raffaela Kunz
标题:使用NeuroMark PET独立组件分析框架运行:Neuromark Ica Ica Ica Pet Atlas作者:Cyrus Eierud A,Martin Norgaard B,C,Murat Bilgel D,Helen Petropoulos A,Helen Petropoulos A,Zening Fuu a,Zening Fuu A,Armin iraji J.Meran iman gran geran geran gran geran, ,Cyril Pernet H,Vince D. Calhoun A,I,J为阿尔茨海默氏病神经影像学计划*隶属关系:A)神经影像学和数据科学转化研究中心(趋势),乔治亚州立大学,乔治亚州立大学,乔治亚大学,乔治亚大学,乔治亚大学,乔治亚大学,乔治亚大学,乔治亚大学,乔治亚大学,乔治亚大学,乔治亚大学,乔治亚大学,乔治亚州大学,乔治亚大学。b)美国马里兰州贝塞斯达国立卫生研究院国家心理健康研究所分子成像分支。c)丹麦哥本哈根哥本哈根计算机科学系。d)美国马里兰州巴尔的摩国家老化研究所行为神经科学实验室。e)Karolinska Institutet和斯德哥尔摩县议会临床神经科学系,斯德哥尔摩,SE-171 64,瑞典。f)美国纽约哥伦比亚大学精神病学系。g)美国纽约哥伦比亚大学生物统计学系。h)丹麦哥本哈根Rigshospitalet的神经生物学研究部门。i)美国佐治亚州亚特兰大佐治亚州立大学神经科学研究所和物理学心理学和计算机科学系。j)佐治亚州佐治亚州佐治亚州佐治亚州佐治亚州佐治亚州理工学院电气和计算机工程系 *)用于准备本文的数据是从阿尔茨海默氏病神经影像学计划(ADNI)数据库(ADNI.loni.loni.usc.edu)获得的。因此,ADNI中的调查人员为ADNI和/或提供数据的设计和实施做出了贡献,但没有参与本报告的分析或撰写。可以在:http://adni.loni.usc.edu/wp- content/uploads/how_to_apply/adni_acknowledgement_list.pdf
Rishi Bommasani* Drew A. Hudson Ehsan Adeli Russ Altman Simran Arora Sydney von Arx Michael S. Bernstein Jeannette Bohg Antoine Bosselut Emma Brunskill Erik Brynjolfsson Shyamal Buch Dallas Card Rodrigo Castellon Niladri Chatterji Annie Chen Crescent Crescent Daro 和 Chris Doncy Moussa Doumbouya Esin Durmus Stefano Ermon John Etchemendy Kawin Ethayarajh 李飞飞 Chelsea Finn Trevor Gale Lauren Gillespie Karan Goel Noah Goodman Shelby Grossman Neel Guha Tatsunori Hashimoto Peter Henderson John Hewitt Daniel E. Ho Jenny J Hong Hong J. Jag 和 Thomas H. Jaghil I. Pratyusha Kalluri Siddharth Karamcheti Geoff Keeling Fereshte Khani Omar Khattab Pang Wei Koh Mark Krass Ranjay Krishna Rohith Kuditipudi Ananya Kumar Faisal Ladhak Mina Lee Tony Lee Jure Leskovec Isabelle Levent Xiang Lisa Li Xuechen Li Tengyu Ma Ali Malik Dtch Mikwall Manning Mikwall Mikwane Eric Dtch. Suraj Nair Avanika纳拉扬 迪帕克·纳拉亚南 本·纽曼 艾伦·聂 胡安·卡洛斯·尼布尔斯 哈米德·尼勒福罗尚 朱利安·尼亚尔科 吉雷·奥古特 劳雷尔·奥尔 伊莎贝尔·帕帕迪米特里奥 朴俊成 克里斯·皮耶希 伊娃·波特兰斯 克里斯托弗·波茨 阿迪蒂·拉古纳坦 罗布·赖希 任洪宇 弗里达·荣 尤瑟夫·罗哈尼 罗希亚·瑞安 罗希亚·罗 多拉·瑞安 卡梅罗 R. 佐川诗织Keshav Santhanam Andy Shih Krishnan Srinivasan Alex Tamkin Rohan Taori Armin W. Thomas Florian Tramèr Rose E. Wang William Wang Bohan 吴家俊 吴玉怀 吴桑 谢志强 Michihiro Yasunaga Jiaxuan You Matei Zaharia Michael 张天一 张希坤 张宇恒 张鲁恒 周凯蒂 珀西梁*1
www.ieeeeivec.org代表IVEC和IVEC 2024会议委员会欢迎欢迎,我想欢迎您参加第25届IEEE国际真空电子会议,共同举行了与IEEE EEEE Electore Electron Electron Conference和IEEE Electon Electron Depectices Society(EDS)真空电子委员会共同举行的。我们的2024会议将是IEEE Electron设备协会(EDS)的赞助下的面对面活动。IVEC会议已经持续了20多年!ivec和IVEC继续他们的遗产召集了蓬勃发展,活泼的国际科学会议讨论,重点是真空电子研究和创新。这些会议一直在世界各地的地点举行,在过去的几年中,至少部分在网络空间中。今年,IVEC完全亲自亲自。该会议已安排,以促进对制造商,系统应用工程师,学者和学生有用的信息的介绍和讨论。传统上,IVEC吸引了一群不同的与会者。技术演示文稿和海报会议,参展商展示和社交活动将为与同事,客户和最终用户以及学生建立旧的或建立新的联系或建立新的联系或友谊。过去,我们将于4月22日星期一开幕于今年的会议。可以通过参加这些课程获得IEEE的继续教育学分。 我们的核心会议是4月23日(星期二)至4月25日(星期四)的为期三天的活动。。可以通过参加这些课程获得IEEE的继续教育学分。我们的核心会议是4月23日(星期二)至4月25日(星期四)的为期三天的活动。我们今年将提供8次迷你课程演讲:凯文·詹森(Kevin Jensen)博士的“排放物理学:理论与仿真”,弗雷德里克·安德雷(FrédéricAndré)博士的“ TWT放大器的基础”,“ RF真空设备的建模,Simon Cooke博士,撰写的“ Imprafast Electron Electron Electron Electon Sussiss and Space Devail a Wave Wavel wave wave wave wave” Jelonnek,Tim Horn教授的“真空电子产品的添加剂制造”,John Smedley博士的“ Photocathode Materials:方法和目标”和John Petillo博士的“电子枪设计”。星期二早上,我们的全体讲座将是Brad Hoff博士和John Luginsland博士的“真空电子设备技术在基本防御挑战中的应用”,以及Armin Feist博士的“将电子显微镜与高级光子学合并”。在周二全体会议之后,我们将颁发2024 John R. Pierce真空电子卓越奖。周三,第二届全体会议将与马克·亨德森(Mark Henderson)博士的“第一代融合发电厂的高电力微波系统”举行,以及“二极管中的电子:关于儿童范围法律和其他基础理论的一些新观点”。在周三的全体会议之后,我们将宣布获得2024年最佳学生纸奖和真空电子年轻科学家奖的获奖者。
原创文章 幽门螺杆菌感染胃组织中 DNA 损伤反应途径的激活:病例对照研究 Amiratabak Rajaei 1#、Armin Ghameshlou 1#、Reza Shirkoohi 2,3、Abbas Shakoori Farahani 3、Seyedeh Zohre Mirbagheri 4、Ronak Bakhtiari 4、Melika Sadat Haeri 1、Ali Rashidi-Nezhad 5,3、Masoud Alebouyeh 6 1 伊朗德黑兰伊斯兰阿扎德大学科学与研究分院生物系 2 伊朗德黑兰医科大学伊玛目霍梅尼医院综合楼癌症研究所癌症研究中心分子遗传学系 3 伊朗德黑兰医科大学伊玛目霍梅尼医院综合楼遗传病房 4 伊朗德黑兰公共卫生学院和健康研究研究所病理生物学系德黑兰医科大学,德黑兰,伊朗 5 德黑兰医科大学家庭健康研究所产妇、胎儿和新生儿研究中心,德黑兰,伊朗 6 沙希德贝赫什提医科大学儿童健康研究所儿科感染研究中心,德黑兰,伊朗 # 作者对这项工作做出了同等贡献。摘要简介:胃炎是世界上最常见的人类疾病之一。尽管幽门螺杆菌感染作为 I 类人类致癌物参与胃癌进展已被接受,但胃炎如何进展为萎缩和胃癌尚不清楚。在这项病例对照研究中,在胃炎患者中调查了幽门螺杆菌感染与 DNA 损伤反应途径基因转录改变的潜在联系。方法:为了测量 H. pylori 感染和非感染患者之间 ATM 、 CHEK2 、 TP53 、 DCLRE1C 、 POLM 和 XRCC4 基因相对 mRNA 表达水平的差异,分析了 30 例患有中度慢性胃炎的 H. pylori 感染患者和 30 例患有轻度慢性胃炎的非感染患者的胃活检样本。结果:非同源末端连接(NHEJ)通路相关基因(DCLRE1C、POLM 和 XRCC)上调率分别为 40%(8.44 倍 ± 13.91)、63.33%(15.72 倍 ± 33.08)和 50%(9.99 倍 ± 21.55),DDR 通路相关基因(ATM、CHEK2 和 TP53)上调率分别为 33%(2.42 倍 ± 3.17)、40%(2.86 倍 ± 3.61)和 50%(5.00 倍 ± 6.52)。研究基因转录水平的改变与年龄或性别之间没有相关性。结论:我们的研究结果提供了新的数据,可能支持幽门螺杆菌感染可能参与激活与 DNA 损伤反应有关的基因,主要是通过非同源末端连接 DNA 修复系统,这可能与癌前胃组织中的诱变有关。关键词:易出错的 DNA 修复途径;胃炎;幽门螺杆菌;NHEJ。J Infect Dev Ctries 2023;17(8):1125-1129。doi:10.3855/jidc。17655(2022 年 11 月 10 日收到 — 2023 年 1 月 2 日接受)版权所有 © 2023 Rajaei 等人。这是一篇开放获取的文章,根据知识共享署名许可分发,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。简介
由亥姆霍兹能源出版 亥姆霍兹能源办公室 卡尔斯鲁厄理工学院 Kaiserstraße 12 76131 Karlsruhe 电子邮件:helmholtzenergy@sts.kit.edu https://energy.helmholtz.de/ 请引用为:亥姆霍兹能源 (2024):亥姆霍兹能源转型路线图 (HETR)。卡尔斯鲁厄。 DOI:10.5445/IR/1000172546 项目负责人:Holger Hanselka,亥姆霍兹能源副总裁,任期至 2023 年 Bernd Rech,亥姆霍兹能源副总裁,任期 2023 年 主要作者(按字母顺序排列):Mark R. Bülow 1 、Andrey Litnovsky 2 、Andrea Meyn 3 、Robert Pitz-Paal 1 , Witold-Roger Poganietz 4 , Sebastian Ruck 4 , Dominik Soyk 3 , K. Gerald van den Boogaart 5 贡献作者(按字母顺序排列) : Heike Boos 3 , Roland Dittmeyer 4 , Helmut Ehrenberg 4 , Maximilian Fichtner 4 , Olivier Guillon 2 , Veit Hagenmeyer 4 , 帕特里克·约赫姆 1 , Thiemo Pesch 2 , Ralf Peters 2 , Rutger Schlatmann 6 , Sonja Simon 1 , Robert Stieglitz 4 , Roel van de Krol 6 致谢:我们感谢以下科学家的贡献(按字母顺序排列):Alejandro Abadías-Llamas 5 , Fatwa F. Abdi 6 , Syed Asif Ansar 1 , Armin Ardone 4 , 克里斯托夫·阿恩特 1 , 塔贝阿恩特 4 , 克里斯托弗·鲍尔 2 , 鲍凯宾 4 , 沃纳·鲍尔 4 , 丹·鲍尔 1 , 曼努埃尔·鲍曼 4 , 沃尔夫冈·贝尔 2 , 克里斯托夫·布拉贝克 2 , 乌尔特·布兰德-丹尼尔斯 1 , Seongsu Byeon 1 , 索尼娅·卡尔南 6 , 莫妮卡·卡尔森 2 , 伊西多拉切基奇-拉斯科维奇 2 , 迈克尔·齐佩雷克 2 , 曼努埃尔·达门 2 , 鲁迪格-A。 Eichel 2 , Ghada Elbez 4 , Ursel Fantz 7 , Dina Fattakhova-Rohlfing 2 , Egbert Figgemeier 2 , Kevin Förderer 4 , Stefan Fogel 5 , K. Andreas Friedrich 1 , Giovanni Frigo 4 , Axel Funke 4 , Siddhartha Garud 6 , Hans-Joachim Gehrmann 4 , Stefan Geißendörfer 1 , Hans C. Gils 1 , Valentin Goldberg 4 , Vaidehi Gosala 1 , Thomas Grube 2 , Martina Haase 4 , Uwe Hampel 5 , Benedikt Hanke 1 , Ante Hecimovic 7 , Heidi Heinrichs 2 , Peter Heller 1 , Wolfgang Hering 4 ,米凯拉·赫尔 1、马克·希勒4 , Tobias Hirsch 1 , Carsten Hoyer-Klick 1 , Judith Jäger 1 , Thorsten Jänisch 1 , Christian Jung 1 , Thomas Kadyk 2 , Olga Kasian 6 , Shaghayegh Kazemi Esfeh 1 , Peter Klement 1 , Christopher Kley 6 , Markus Köhler 1 , Thomas Kohl 4 , Manfred Kraut 4 , Ulrike Krewer 4 , Uwe G. Kühnapfel 4 , Felix Kullmann 2 , Arnulf Latz 4 , Thomas Leibfried 4 , Ingo Liere-Netheler 1 , Guido Link 4 , Jochen Linßen 2 , Yan Lu 6 , Kourosh Malek 2 , Florian Mathies 6 , Jörg马太斯 4 , 马修·梅尔 6 , Wided Medijroubi 1 , Wolfgang Meier 1 , Matthias Meier 2 , Norbert H. Menzler 2 , Wilhelm A. Meulenberg 2 , Nathalie Monnerie 1 , Dulce Morales Hernandez 6 , Michael Müller 2 , Martin Müller 2 , Alexander von Müller 7 , Gerd Mutschke 5 , Tobias Naegler 1 , Dimitry Naumenko 2 , Eugene T. Ndoh 1 , Klarissa Niedermeier 4 , Fabian Nitschke 4 , Mathias Noe 4 , Urbain Nzotcha 2 , Sadeeb S. Ottenburger 4 , Ulrich W. Paetzold 4 , Joachim Pasel 2 , Sara Perez-Martin 4 , 伊恩·M·彼得斯 2 , 彼得普法伊弗 4 、诺亚·普弗格勒特 2 、菲利普·N·普莱索 4 、迈克尔·波兹尼克 4 , 安里克·普拉茨-萨尔瓦多 4 , 帕特里克·普鲁斯特 2 , 德克·拉德洛夫 4 , 乌韦·劳 2 , 德克·雷瑟 2 , 马塞尔·里施 6 , 马丁·罗布 1 , 克里斯汀·罗施 4 , 菲利普·罗斯 4 , 卢卡斯·罗斯 1 , 雷姆齐·坎·萨姆松 2 , 伊娃·席尔 4 ,安德里亚·施赖伯 2 , 马库斯·舒伯特 5 , 弗兰克·舒尔特 1 , 托尔斯滕·施瓦茨 1 , 哈瓦尔·沙蒙 2 , 梅塔尔·施维罗 2 , 谢尔盖·索尔达托夫 4 , 迪特·斯塔普夫 4 , 帕纳吉奥蒂斯·斯塔索普洛斯 1 , 桑德拉·斯坦克 6 , 沃尔克·施特尔泽 4 , 彼得·斯特默曼 4 , 菲利克斯斯图特 4 , 克洛伊·西拉尼杜2 , Muhammad Tayyab 2 , André Thess 1 , Stefanie Troy 2 , Julia Ulrich 4 , Annelies Vandersickel 1 , Robert Vaßen 2 , Martin Vehse 1 , Stefan Vögele 2 , Thomas Vogt 1 , Simon Waczowicz 4 , André Weber 4 , Tom Weier 5 , Marcel Weil 4 , 阿方斯·魏森伯格 4 , 托马斯·韦策尔 4 , 凯·维格哈特 1 , 克里斯蒂娜·伍尔夫 2 , 安德烈·霍内克斯 2 , 佩特拉·扎普 2 , 马可·佐贝尔 1 , 斯特凡·祖夫特 1
开发正电子发射断层扫描示踪剂以检测错误折叠的聚集体SYN将彻底改变早期诊断,疾病监测和评估治疗功效。在这里,我们介绍了[11 C] MODAG-005的体外和体内验证的发育和临床前的验证。体外结合实验证明了与重组纤维纤维以及人脑组织中的syn夹杂物的亚洋摩尔结合亲和力。使用自显影和微动摄影术检测到多系统萎缩(MSA)脑组织中的特异性结合,并通过免疫染色进行了验证。体内,[11 C]模量-005显示出良好的脑穿透性,脑组织的快速清除以及啮齿动物和非人类灵长类动物的代谢产物低的代谢产物形成。此外,在syn fibril注射的大鼠模型和syn(A30p)转基因小鼠模型中,在与病理载荷相关的syn fibril大鼠模型中达到了明显的结合和良好的信噪比。为了验证其在治疗发展中的价值,我们显示了候选药物Anle138b在SYN(A30p)小鼠和MSA的脑组织中的目标参与,以及在syn fibril注射的大鼠中的体内。最后,我们在临床上建立MSA的第一个人类患者中的翻译方法显示,在受Syn病理学影响的区域中,示踪剂的结合具有明显的示踪剂结合,尤其是在纹状体中,该模式与多巴胺转运蛋白转运蛋白转运蛋白单光子发射计算机进行计算计算计算机的神经变性相对应。目前仅通过验尸尸检才有可能进行确定的诊断[1]。在阿尔茨海默氏病(AD)中,突触核酸症,例如帕金森氏病(PD),痴呆症患有路易的身体(DLB)和多个系统萎缩(MSA),是神经退行性疾病,对我们的衰老社会构成了重大威胁。他们共同的神经病理学标志是存在错误折叠的syn的存在,它在大脑中的空间分布依赖于阶段和疾病的类型。病理学的积累开始在第一次(运动)症状发作之前的几年开始,因此将是早期检测和监测疾病进展的极好的生物标志物[2]。正电子发射断层扫描(PET)是一种非侵入性成像技术,可追溯到为体内特定生物学靶标设计的放射性标记的分子[3]。
